跳到主要內容

影響LHCII聚集的因素

 

LHCII。圖片來源:維基百科

如果說光合作用(photosynthesis)是世界上最重要的反應,這句話一點也不過份。畢竟,所有的生物都依賴植物,而植物依賴光合作用來合成一切。

光合作用又分為光反應(light reaction)與卡爾文循環(也稱為碳反應,Calvin cycle)。光反應主要就是吸收光能並轉化為化學能(ATP,腺核苷三磷酸)與電子。

光反應中,吸收光能的成員有兩個光系統(photosystems,PS)與兩個捕光複合體(light-harvesting systems,LHC)。光系統負責捕捉光能,並啟動光反應;捕光複合體則是協助光系統捕捉光能。

而其中的LHCII是植物光合作用系統中最豐富的膜蛋白質複合體。它的主要位於葉綠體的類囊體膜中,由多種蛋白質和色素分子(如葉綠素和類胡蘿蔔素)組成,形成一個高度有序的複合體。

LHCII的主要功能是捕獲太陽光能量並將其轉換為化學能。它吸收光子並將激發能傳遞給光系統II(PSII)的反應中心,促進水分子的光解並釋放氧氣。

LHCII不僅是光能的捕獲者,還參與調節植物對光環境的適應。它在非光化學淬滅(NPQ)過程中起著重要作用,這是一種保護機制,用於在強光條件下避免對光合作用系統的損害。

LHCII的組裝和聚集狀態可以根據光照強度和其他環境因素進行動態調節。在不同的環境條件下,它會通過改變其聚集狀態來調整對光能的捕獲和利用效率。過去的研究發現,在高光照狀況下,光反應的電子傳遞鏈趨於飽和,使還原態的質體醌(PQH2)累積,活化捕光複合體II激酶(LHCII protein kinase)。LHCII激酶活化後便會去磷酸化LHCII,使其離開光系統II。捕光複合體II離開光系統II後,傳遞至光反應電子傳遞鏈的電子減少,PQH2慢慢減少,減少到一定程度後便會活化LHCII磷酸酶(LHCII phosphatase),讓捕光複合體II回來。

LHCII也參與類囊體膜的組織結構,協助確保有效的能量轉移和光合作用的最佳化。

總而言之,LHCII是一個多功能的蛋白質複合體,對於植物的光合作用和對光環境的適應非常重要。

最近的研究報告探討了植物細胞膜中光合作用的主要捕光複合體(LHCII)的聚集現象。研究團隊通過單分子測量、LHCII蛋白質脂質體(proteoliposomes)的構建,以及統計熱力學模型的應用,定量地研究了LHCII之間的相互作用能量。

實驗顯示,在中性pH環境下,LHCII-LHCII之間的相互作用能量為約 -5 kBT(博爾茲曼常數乘以溫度),而在酸性pH下,這一數值增加至至少 -7 kBT。這顯示,LHCII聚集的熱力學驅動力主要是焓(enthalpy)驅動的,而且這種聚集在酸性條件下會增強。研究結果顯示,pH的降低會導致LHCII的電荷減少,從而增加其之間的吸引力。由於光反應發生時,類囊體腔(thylakoid lumen)會變酸,所以LHCII的這個特性相當有趣。

此外,研究團隊還發現,LHCII在酸性條件下的聚集對於植物光合作用中非光化學淬滅(non-photochemical quenching, NPQ)的調控非常重要。NPQ是一種保護機制,通過散發多餘的光能量來保護植物光合系統不受光損傷。

整體而言,研究團隊透過定量分析LHCII蛋白間的相互作用能量,解開了LHCII在不同pH條件下聚集行為的分子層面機制,並對植物在高光照條件下調節光合作用的方式提供了新的理解。過去只知道高光照會啟動LHCII激酶,使其離開光系統II,現在還瞭解到高光照所造成的類囊體腔酸化,也會刺激LHCII的聚集。

參考文獻:

Manna P, Hoffmann M, Davies T, Richardson KH, Johnson MP, Schlau-Cohen GS. Energetic driving force for LHCII clustering in plant membranes. Sci Adv. 2023 Dec 22;9(51):eadj0807. doi: 10.1126/sciadv.adj0807. Epub 2023 Dec 22. PMID: 38134273.

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N