跳到主要內容

發表文章

目前顯示的是有「rubisco」標籤的文章

如何讓C4植物增產?

  圖片作者:ChatGPT 看到這個題目,有些讀者應該會想:嗄?C4植物本來產量就比較高了,為什麼還要增產呢? 事實上,雖然C4植物本來產量就比較高,但是根據最近的研究發現,隨著大氣中二氧化碳濃度升高,其實C4植物也還可以再「ㄠ」一下喔! 看文章

有兩個「魯必斯科」要做什麼?

  四種不同的「魯必斯科」。圖片取自 期刊 你知道光合作用碳反應的第一個酵素「魯必斯科」(RuBisCo)嗎? 你知道魯必斯科有四種嗎? 最近研究海洋生物的科學家,在海洋的藍綠菌裡面,發現有一個藍綠菌居然有兩個魯必斯科! 為什麼它要兩個呢?多一個不會是用來煮湯的吧? 看文章

混血的RuBisco大勝純種

  RuBisco. 圖片來源: 維基百科 。 RuBisco(D-核糖-1,5-二磷酸羧化酶/加氧酶,D-ribulose-1,5-bisphosphate carboxylase/oxygenase)是負責光合作用(photosynthesis)碳反應(carbon assimilation reactions,又稱為卡爾文循環[Calvin cycle])的第一個酵素,它負責把二氧化碳抓下來,與1,5-二磷酸核糖(RuBP,ribulose 1,5-bisphosphate)反應後轉換為兩個三碳化合物3-磷酸甘油酸酯 (3-PGA,3-phosphoglycreate)。 光合作用則是植物將二氧化碳轉為糖類的一組反應。光合作用可分為光反應(light reactions)與碳反應。光反應負責把光能轉換為化學能(ATP,三磷酸腺苷)與電子(NADPH,菸鹼醯胺腺嘌呤二核苷酸磷酸),碳反應負責把二氧化碳還原為三碳糖3-磷酸甘油醛(glyceraldehyde 3-phosphate,G3P),過程中需要光反應提供還原二氧化碳所需要的電子與能量。 過去的研究發現,RuBisco有許多「毛病」,毛病之一就是它會把氧氣當作二氧化碳來用,結果就造成RuBP的氧化,產生一個3-PGA與一個兩碳的2-磷酸乙醇酸(2-phosphoglycolate)。2-磷酸乙醇酸細胞無法使用,為了回收它,細胞必須消耗ATP與氧氣,整個過程稱為「光呼吸作用」(photorespiration)。 毛病之二是它的活性並不高。若以C3植物(如水稻、小麥)與C4植物(如高粱、玉米、甘蔗、粟)來比較,C3植物的RuBisco活性低於C4植物,但C4植物的RuBisco對二氧化碳的親和力低於C3植物,且會受到氧氣的抑制--不過因為C4植物的RuBisco位於不會接觸到氧氣的髓鞘細胞(bundle sheath cell),而且C4植物自帶濃縮二氧化碳的機制(蘋果酸去氫酶,malate dehydrogenase),所以一般來說不是問題。 RuBisco是由八個大次單元(large subunit)與八個小次單元(small subunit)所構成的複合體,大次單元負責進行固碳反應(RuBP+CO 2  → 2 3-PGA),小次單元的功能目前被認為是負責調控大次單...

在大腸桿菌中組合光合作用碳反應的第一個酵素RuBisco

  rubisco。圖片來源: 維基百科 。 植物依靠光合作用(photosynthesis)將二氧化碳轉為糖類,過程中的許多中間產物,也是植物生合成所必須的原料。光合作用可分為光反應(light reactions)與碳反應(carbon assimilation reactions,又稱為卡爾文循環[Calvin cycle])。光反應負責把光能轉換為化學能(ATP,三磷酸腺苷)與電子(NADPH,菸鹼醯胺腺嘌呤二核苷酸磷酸),碳反應負責把二氧化碳還原為三碳糖3-磷酸甘油醛(glyceraldehyde 3-phosphate,G3P)。碳反應需要光反應提供還原二氧化碳所需要的電子與能量。 負責碳反應的第一個酵素,就是大名鼎鼎的RuBisco。這個酵素有個很長的名稱,D-核糖-1,5-二磷酸羧化酶/加氧酶(D-ribulose-1,5-bisphosphate carboxylase/oxygenase)。RuBisco負責把二氧化碳抓下來,與1,5-二磷酸核糖(RuBP,ribulose 1,5-bisphosphate)反應後轉換為兩個三碳化合物3-磷酸甘油酸酯 (3-PGA,3-phosphoglycreate)。 過去的許多研究發現RuBisco有許多「毛病」,最大的毛病就是它會把氧氣當作二氧化碳來用,結果就造成RuBP的氧化,產生一個3-PGA與一個兩碳的2-磷酸乙醇酸(2-phosphoglycolate)。2-磷酸乙醇酸細胞無法使用,為了回收它,細胞必須消耗ATP與氧氣,整個過程稱為「光呼吸作用」(photorespiration)。 想要深入的研究RuBisco,就必須要有純化的酵素。純化它並不難--只要跑過植物蛋白質膠的人,都會看到RuBisco表現量非常高--但難在高等植物的RuBisco是由八個大次單元(large subunit)與八個小次單元(small subunit)所構成的複合體,大次單元的基因( RbcL )位於植物的葉綠體(chloroplast)內,小次單元的基因( RbcS )位於細胞核內。但是細胞核內的小次單元基因卻不只一個,而是一個「家族」,這使得從植物中直接純化出來的RuBisco成為一個混合物,無法直接進行酵素動力學的測定。 最近康乃爾大學的研究團隊,成功地在大腸桿菌( E. coli , Escheric...

低溫下的C4植物

玉米。圖片來源: Wikipedia 先說這篇文章的結論:讓玉米表現比較多的RuBisCo(ribulose 1,5-bisphosphate carboxylase/oxygenase,1,5-二磷酸核酮糖羧化酶/加氧酶,負責把二氧化碳抓下來的酵素),可使玉米在低溫(攝氏14度以下)時光合作用效率能維持較高溫的效率。 我自己看到覺得有趣的點是:過去我們在學習光合作用時提到C4植物(玉米就是一種C4植物),也會提到它在低溫時光合作用效率不如C3植物。但過去課本上都是說:可能是因為C4植物在固碳時需要額外的能量,造成它在低溫時效率不如C3植物。 這篇論文裡面提到,最近這幾年的研究已經發現,C4植物在低溫下因為RuBisCo的結構不穩定,造成它在植物裡面的含量下降了四成,而這使得整體光合作用的效率下降了六成。所以讓RuBisCo表現量提升,可以造成玉米在低溫時的光合作用效率不會下降,從而造出「耐冷」玉米品系。 重要農作物是C4植物的有玉米、高梁、甘蔗以及部分的小米。不知道其他C4農作物是否在低溫下也有類似的事情發生,如果是,是否可藉由這篇論文裡面類似的機制來提升光合作用效率(或者說,使它們光合作用的效率可以維持)。當然,如果能找到非基改的品系,看看非基改的耐冷品系的RuBisCo的序列及/或表現量是否與不耐冷品系有所不同,這也是個有趣的課題。 參考文獻: Coralie E. Salesse‐Smith, Robert E. Sharwood, Florian A. Busch, David B. Stern. Increased Rubisco content in maize mitigates chilling stress and speeds recovery . Plant Biotechnology Journal, 2019

人算不如天算之光合作用改進

光合作用(photosynthesis)裡面最重要的酵素就是簡稱Rubisco的酵素了。 Rubisco。圖片來源: wiki 這個酵素有個很長的名字,D-ribulose-1,5-bisphosphate carboxylase/oxygenase,因為酵素命名的通則是「受質或產物名稱」(D-ribulose-1,5-bisphosphate)+「反應類型」(carboxylase/oxygenase),所以就有個「落落長」的名字。 從它的名字可以看到,這個酵素有兩種反應類型:一個是我們熟悉的反應類型,將二氧化碳與D-ribulose-1,5-bisphosphate(RuBP)結合,產生兩個分子的帶有磷酸根的三碳化合物3-phosphoglycreate (3-PGA),這個反應是所謂的羧基化(carboxylation);另一個則是將RuBP氧化,產生一分子的3-PGA以及一分子的2 - 磷酸乙醇酸(2-phosphoglycolate)。2 - 磷酸乙醇酸對植物無用,必需消耗能量來回收它,回收的過程被稱為光呼吸(photorespiration)作用。 因為光呼吸作用會消耗能量,對植物來說當然是有害無益;但是偏偏Rubisco就是沒辦法把對氧氣的親和力完全去除。由於Rubisco只能利用溶於水的氣體(不論是氧或二氧化碳),當溫度上昇時氣體對水的溶解度會下降;而二氧化碳因為分子量比氧大,所以溶解度下降得更明顯,造成在氣溫上昇的時候,光呼吸作用會變得更劇烈。 對於溫帶植物或許這個問題只是小事情,但是對於熱帶與亞熱帶的植物來說,光呼吸作用是他們一年到頭都要處理的問題。 於是,某些熱帶與亞熱帶的植物(如:玉米),演化出了C4代謝。C4代謝並沒有把Rubisco給消滅,而是在Rubisco的反應前面,加入了一個濃縮二氧化碳的機制(CO 2 -concentrating mechanism,CCM)。同時,執行C4代謝的植物把CCM與包含Rubisco在內的整個卡爾文循環(Calvin cycle)分開,將卡爾文循環關到髓鞘細胞(bundle-sheath cell)中,減少Rubisco與氧氣的接觸,使得C4代謝可以成功地將光呼吸作用給消滅。 C4植物的葉片橫切面。 綠色部分是葉肉細胞(mesophyll),圍繞著中心的 維管束(...