跳到主要內容

發表文章

目前顯示的是有「C4 代謝」標籤的文章

如何讓C4植物增產?

  圖片作者:ChatGPT 看到這個題目,有些讀者應該會想:嗄?C4植物本來產量就比較高了,為什麼還要增產呢? 事實上,雖然C4植物本來產量就比較高,但是根據最近的研究發現,隨著大氣中二氧化碳濃度升高,其實C4植物也還可以再「ㄠ」一下喔! 看文章

其實C4植物也怕熱

  圖片取自 期刊 因為C4植物比C3植物在高溫下仍能維持較高的產量,所以近年來有些科學家致力於將我們的主要作物(C3植物)改造為C4植物。 但是,我們對C4植物在高溫下的生理學,瞭解得夠透徹了嗎? 最近的研究發現,其實C4植物也怕熱! 看文章

馬齒莧(Portulaca oleracea)的秘密

  馬齒莧。圖片來源: 維基百科 第一次對馬齒莧有深刻印象,是讀張拓蕪的《代馬輸卒》系列。在書中,張拓蕪提到他們駐紮在江蘇時,因為吃太多螃蟹導致腹瀉,經當地居民提供秘方:馬齒莧。張拓蕪還提到馬齒莧的口感「帶酸而滑溜」! 馬齒莧( Portulaca oleracea )又名馬生菜、馬齒菜、馬屎莧、五行草、酸莧、豬母乳、馬勺菜、地馬菜、馬蛇子菜、長壽菜、老鼠耳、寶釧菜、螞蚱菜,是馬齒莧科馬齒莧屬植物。馬齒莧廣泛分布於世界各地,既可食用也具有藥用價值。這種植物富含營養素,如胡蘿蔔素、維生素C、維生素E和ω-3不飽和脂肪酸,並且能夠適應極端的環境條件,如高溫、乾旱、高濕、高鹽和低營養水平 。中醫用地上全草入藥。味甘酸、性寒、無毒。功效為清熱解毒,散血消腫,除濕止痢,利尿潤肺,止渴生津。 主治痢疾、癰瘡腫毒、臁瘡、消渴生津、小便不通、白喉、久咳、蟯蟲、男性陰囊濕疹、婦女赤白帶下、子宮出血、痔瘡出血、乳瘡。在希臘的民間馬齒莧用於便秘和泌尿系統炎症的治療。古羅馬的老普林尼認為馬齒莧的藥效很好,以至於建議大家佩戴馬齒莧以驅邪 (《博物志》 20.120)。 最近的一項研究,特別關注了馬齒莧在光合作用中的兩種不同途徑:C4途徑和景天酸(CAM)途徑。原來,馬齒莧也是C4植物;但是在乾旱條件下,馬齒莧會轉而進行CAM代謝,這是一種適應性策略。 研究團隊發現馬齒莧發生過兩次全基因組重複(WGD)事件,一次古老的WGD(P-β)發生在馬齒莧和仙人掌科的共同祖先中,大約在6600萬年前,另一次(Po-α)則特定於馬齒莧的系譜,約在774萬年前 。 研究團隊發現,與相關物種相比,馬齒莧中涉及C4和CAM途徑的關鍵酶/運輸蛋白的基因拷貝數量更多。特別是,Po-α WGD事件產生了用於光合作用的磷酸烯醇丙酮羧化酶(PEPC)基因拷貝,而P-β WGD事件則產生了兩個功能差異化的β-碳酸酐酶(β-CA)基因,這些基因參與了C4+CAM途徑 。 此外,研究團隊還發現了馬齒莧的基因組中存在較多的全基因組重複事件,這些事件對於增加與C4和CAM途徑相關的基因拷貝數量有重要影響 。 總而言之,這篇文章提供了對馬齒莧中C4和CAM途徑起源和演化過程的深入了解,並指出這些發現對於未來將C4或CAM代謝途徑整合到作物中具有潛在的應用價值 。 參考文獻: Wang X, Ma ...

髓鞘細胞的木栓質化(suberisation)對C4植物很重要

C4植物葉片的橫切面,紫色部分為髓鞘。圖片來源:維基百科  C4植物因為在光合作用的卡爾文循環(Calvin cycle,碳反應)前多了一個步驟,而這個步驟會產生一個四碳的化合物而得名。過去的研究發現,C4植物在葉肉細胞(mesophyll,上圖深綠色部分)進行固碳作用,產生四碳化合物;接著將四碳化合物運入髓鞘細胞(bundle sheath cell,上圖紫色部分),再進行反應釋出二氧化碳,進行卡爾文循環。由於進行光合作用的第一個酵素RuBisCo位於髓鞘細胞內,減少了與氧氣的接觸,因此C4植物沒有光呼吸作用(photorespiration),讓C4植物進行光合作用的效率更高。 但是RuBisCo真的不會接觸到氧氣嗎?一點點都不會?最近的研究發現,原來許多C4植物的髓鞘細胞壁有木栓質(suberin)。木栓質為長鏈的碳氫化合物,厭水且不透氣。因為髓鞘細胞壁上的木栓質,使得四碳化合物在進入髓鞘細胞、隨後進行反應產生的二氧化碳不會擴散出去,造成髓鞘細胞內的二氧化碳濃度極高;再加上木栓質也隔絕了外界的氧氣進入髓鞘細胞,於是位於髓鞘細胞內的RuBisCo就可以有效率地進行卡爾文循環了。 這個發現是由澳洲國立大學的研究團隊發現的。他們以狗尾草( Setaria viridis )為模式植物,在2%的二氧化碳下篩選長得不好的狗尾草突變株。篩選的結果找到了幾個突變株,其中一個就是影響到髓鞘細胞木栓質層形成的蛋白質。 深入觀察發現,少了這個基因的突變株,它的髓鞘細胞壁上的木栓質沈積少了許多,但根部表皮仍可以看到木栓質。而這使得髓鞘細胞內的二氧化碳濃度比野生種低了兩倍,也使得碳同化作用效率大減。 這個發現證明了髓鞘細胞壁的木栓質化,對C4植物的光合作用效率很重要。但仍有些C4植物的髓鞘細胞壁是沒有木栓質化的。到底這些髓鞘細胞壁沒有木栓質化的C4植物,是怎樣維持他們的光合作用效率,是個值得探討的議題。 參考文獻: Florence R. Danila, Vivek Thakur, Jolly Chatterjee, Soumi Bala, Robert A. Coe, Kelvin Acebron, Robert T. Furbank, Susanne von Caemmerer, William Paul Quick. Bundle sheath suberisation...

把水稻變成C4植物

水稻。圖片來源:維基百科。 水稻是東亞與非洲重要的主食。2018年全世界稻米產量為7.82億噸。許多國家以稻米為主食之一,若扣掉動物食用的部分,並將亞洲水稻( Oryza sativa )與非洲稻( Oryza glaberrima ,光稃稻)合併計算,稻米可說是世界上最多人食用的穀物,也是世界產量第一的穀物。 這樣重要的作物,每年要消耗世界大約三分之一的水來種植它。隨著氣候變遷、旱澇相繼,有些地區因為缺水開始變得不適合種植水稻,但糧食安全是個重要的議題,總不能全部依賴進口。 有些科學家便開始想,如果水稻不是C3植物,而是C4植物就好了。畢竟C4植物比C3植物要省水,也比較耐熱。於是「國際C4水稻計畫」(the international C4 Rice Project)就這麼誕生了。這個計畫包括了許多不同國家的研究團隊,由牛津大學主導。他們認為,如果可以把水稻變成C4植物,水稻的光合作用效率會提升50%、提升氮的使用效率、還可以改善水的消耗。 最近他們有了第一個突破。透過合成生物學的協助,研究團隊只花了一年的時間就一次將五個玉米的C4代謝相關的基因(碳酸酐酶[carbonic anhydrase]、 磷酸烯醇丙酮酸(PEP)羧化酶[phosphoenolpyruvate (PEP) carboxylase]、NADP-蘋果酸脫氫酶[NADP‐malate dehydrogenase]、 丙酮酸正磷酸二激酶[pyruvate orthophosphate dikinase] 與NADP蘋果酸酶[NADP‐malic enzyme])轉入超早熟水稻品系( Oryza sativa spp. japonica cultivar Kitaake)中。過去光是要轉入一個基因,就要花好幾年。 碳酸酐酶負責將二氧化碳與水反應,產生PEP羧化酶所需要的重碳酸根(bicarbonate,HCO 3 - );PEP羧化酶負責把重碳酸根與PEP反應,產生草醯乙酸(oxaloacetate),這是C4植物的第一個固碳反應;而NADP-蘋果酸脫氫酶、 丙酮酸正磷酸二激酶與NADP蘋果酸酶則是C4反應中必需的酵素。 研究團隊確認了這五個基因在水稻中都有表現,也都有活性。以碳十三標定的二氧化碳追蹤發現,流向PEP羧化酶的碳增加了十倍(約為玉米的2%)。 雖然這個水稻還不是C4植物,...

沒有髓鞘細胞(bundle sheath cell)的C4植物

只要學過光合作用(photosynthesis)的人,應該都知道卡爾文循環(Calvin cycle)除了傳統的 C3 反應以外,還有兩種變體:C4 與 CAM。 CAM 植物包括了仙人掌與景天科的多肉植物,他們的特徵就是只在晚上打開氣孔抓空氣中的二氧化碳,轉化為四碳的有機酸存在液泡(vacuole)中,白天則將液泡中的有機酸分解產生二氧化碳來進行卡爾文循環。而 C4 植物則具備有所謂的「克蘭茲解剖構造」(Kranz anatomy):表皮下有被葉肉細胞(mesophyll,下圖綠色)密密包圍的髓鞘細胞(bundle sheath cells,下圖紫色),髓鞘細胞的中心則是維管束(下圖紅色)。 C4 植物(玉米)葉片的橫切面。圖片來源: Wiki 從1970年代開始,大家對 C4 植物的認知就是:他們這特殊的構造與其生理學息息相關。原來 C4 植物生長在熱帶與亞熱帶,由於高溫的環境容易導致光呼吸作用(photorespiration)的發生,而光呼吸作用會消耗植物辛苦收集來的能量;而 C4 代謝由於把造成光呼吸作用的「禍首」 核酮糖-1,5-二磷酸羧化酶/加氧酶(Ribulose-1,5-bisphosphate carboxylase/oxygenase,RuBisCo) 關進髓鞘細胞中,成功的消滅了光呼吸作用;這使它們不僅在熱帶與亞熱帶得以存活下來,甚至還取得了競爭上的優勢(關於 C4 植物詳見: 為什麼「種豆南山下,草盛豆苗稀」? )。 因此,只要一想到 C4 植物就一定會想到「克蘭茲解剖構造」。是否有不具備「克蘭茲解剖構造」的 C4 植物呢?如果沒有髓鞘細胞,又要如何避免 RuBisCo 與氧氣接觸而產生光呼吸作用呢?想想好像蠻困難的! 不過,就像電影「侏羅紀公園」裡面的名言:「生命自會找到出路」,在2002年,俄羅斯的研究團隊發現一種很特別的 C4 植物   Bienertia cycloptera  ,竟然沒有髓鞘細胞,也就是說,它沒有「克蘭茲解剖構造」! Bienertia 屬植物。圖片來源: Wiki 沒有髓鞘細胞的植物要如何進行 C4 代謝呢?研究團隊發現,那胖胖而多肉的葉片由一到三層的葉綠組織(chlorenchyma,即含有葉綠體的薄壁細胞)以及位於葉片中心的儲水細胞構成。但是它...

為什麼「種豆南山下,草盛豆苗稀」?

陶淵明在「歸園田居」詩中,曾經提到「種豆南山下,草盛豆苗稀」。這首詩大家都很熟了,也是很受歡迎的國文教材,但是,有多少人認真去想為什麼「草盛豆苗稀」呢?難道只是因為陶淵明不會種田嗎? 圖一:陶淵明。圖片來源: wiki 雖然根據歷史的記載,「歸園田居」可能真的就是在他剛隱居的時候寫的(1);而在那時候,可能他的耕種技術也的確是還有待提升;不過筆者卻認為,從生物學的角度來看,「草盛豆苗稀」也不全是耕種技術的問題。 首先,我們來看一下氣候。陶淵明隱居的地點在潯陽柴桑,也就是現在的江西省九江市星子縣。當地是北緯29.44度,在北回歸線以北,屬於濕潤型亞熱帶氣候(2), 1971-2000 的年平均溫度為攝氏17.03度,每年四月就不再有攝氏零度以下的低溫(3)。雖然還是比臺灣偏北(台北市是北緯25.02度),大致上還是屬於溫和的氣候,植物的種類應該也不會相差太多。即使考慮近年來全球暖化的問題,應該也不會超過攝氏一度(4)。 在亞熱帶的台灣,夏天通常並不是植物茂盛生長的時期。為什麼呢?因為世界上90%的陸生植物是C3植物,這些植物在氣溫超過攝氏30度時,會因為光呼吸作用(photorespiration)造成水分的消耗大量上昇。C3植物(如大豆)在攝氏30度時,每抓一個二氧化碳分子就要消耗833個水(5),於是植物的生長速度就開始變慢。 不過,並不是所有的植物在夏天時生長速度都會變慢唷!有些植物,如玉米、甘蔗等,反而在夏天時長得特別好。為什麼呢? 原來玉米與甘蔗是所謂的C4植物,它們既耐熱又耐旱,跟C3植物比較起來,在攝氏30度時 C4植物每抓一個二氧化碳的分子只消耗277個水(5),所以夏天的時候,它們的生長速度ㄧ點都不受影響呢! 說到這裡,讀者可能會想:什麼是C4植物?為什麼它們能夠既耐熱又耐旱呢? 所謂的C3、C4植物,指得是它們在光合作用上的不同。C3植物進行光合作用時,是由卡爾文循環(Calvin cycle)的酵素(RuBisCo, 如圖二)直接抓取溶解在細胞中的二氧化碳,與核酮糖1,5-二磷酸(ribulose 1,5-bisphosphate,RuBP)進行反應; 圖二:卡爾文循環。圖片來源: wiki 而C4植物則在卡爾文循環上面,又增加了幾個步驟,而且這幾個步驟還跟卡爾文循環在不同的組織中進行...

人算不如天算之光合作用改進

光合作用(photosynthesis)裡面最重要的酵素就是簡稱Rubisco的酵素了。 Rubisco。圖片來源: wiki 這個酵素有個很長的名字,D-ribulose-1,5-bisphosphate carboxylase/oxygenase,因為酵素命名的通則是「受質或產物名稱」(D-ribulose-1,5-bisphosphate)+「反應類型」(carboxylase/oxygenase),所以就有個「落落長」的名字。 從它的名字可以看到,這個酵素有兩種反應類型:一個是我們熟悉的反應類型,將二氧化碳與D-ribulose-1,5-bisphosphate(RuBP)結合,產生兩個分子的帶有磷酸根的三碳化合物3-phosphoglycreate (3-PGA),這個反應是所謂的羧基化(carboxylation);另一個則是將RuBP氧化,產生一分子的3-PGA以及一分子的2 - 磷酸乙醇酸(2-phosphoglycolate)。2 - 磷酸乙醇酸對植物無用,必需消耗能量來回收它,回收的過程被稱為光呼吸(photorespiration)作用。 因為光呼吸作用會消耗能量,對植物來說當然是有害無益;但是偏偏Rubisco就是沒辦法把對氧氣的親和力完全去除。由於Rubisco只能利用溶於水的氣體(不論是氧或二氧化碳),當溫度上昇時氣體對水的溶解度會下降;而二氧化碳因為分子量比氧大,所以溶解度下降得更明顯,造成在氣溫上昇的時候,光呼吸作用會變得更劇烈。 對於溫帶植物或許這個問題只是小事情,但是對於熱帶與亞熱帶的植物來說,光呼吸作用是他們一年到頭都要處理的問題。 於是,某些熱帶與亞熱帶的植物(如:玉米),演化出了C4代謝。C4代謝並沒有把Rubisco給消滅,而是在Rubisco的反應前面,加入了一個濃縮二氧化碳的機制(CO 2 -concentrating mechanism,CCM)。同時,執行C4代謝的植物把CCM與包含Rubisco在內的整個卡爾文循環(Calvin cycle)分開,將卡爾文循環關到髓鞘細胞(bundle-sheath cell)中,減少Rubisco與氧氣的接觸,使得C4代謝可以成功地將光呼吸作用給消滅。 C4植物的葉片橫切面。 綠色部分是葉肉細胞(mesophyll),圍繞著中心的 維管束(...

原來秦朝、漢朝的主食是小米!

小米(Foxtail millet)圖片來源: 維基百科 黍(Proso millet)。圖片來源: 維基百科 小米(Foxtail millet, Setaria italica ,上圖)與黍(Proso millet, Panicum miliaceum ,下圖)是中國在秦(221–206 BC)、漢(206 BC – 220 AD) 的主食;它們具有許多優點,包括生長期短,可以很快收穫;以及因為是C4代謝,所以對肥料的需求、對水的需求相對較低。 對肥料的需求不高,使得小米可以在黃土高原生長(黃土並不肥沃)。 中國發源於北方,北方的氣候並不適合種大米(rice, Oryza sativa ,a.k.a.稻子)。 漢朝時開始有小麥出現,但是主要是做為跟小米、黍、大豆輪作的農作物。當時的中國已發展出精緻的三年輪作系統,由夏季種黍開始,接著是同一年的冬季種小麥,第二年春天收穫小麥後種下大豆,然後到第三年夏天種小米。如此循環三年,同時將土地分成三份,第一年夏天第一塊地種黍、第二塊地種小米、第三塊地種大豆....這樣田地的養分會因為有大豆加入輪作而不至於缺氮,而每年都可以有小米、黍、大豆、小麥可吃。 歐洲直到一千年後才發展出輪作,但是複雜的程度則遠遠不及漢朝。 漢朝時,開始有大米可吃,不過吃大米可能是貴族的專利。 因為有小麥,所以漢朝時開始有「麵」出現。 資料來源: T.R. Sinclair,C.J. Sinclair. 2010. Bread, Beer and the Seeds of Change:Agriculture's Imprint on World History. ISBN:9781845937058