跳到主要內容

人算不如天算之光合作用改進

光合作用(photosynthesis)裡面最重要的酵素就是簡稱Rubisco的酵素了。
Rubisco。圖片來源:wiki
這個酵素有個很長的名字,D-ribulose-1,5-bisphosphate carboxylase/oxygenase,因為酵素命名的通則是「受質或產物名稱」(D-ribulose-1,5-bisphosphate)+「反應類型」(carboxylase/oxygenase),所以就有個「落落長」的名字。

從它的名字可以看到,這個酵素有兩種反應類型:一個是我們熟悉的反應類型,將二氧化碳與D-ribulose-1,5-bisphosphate(RuBP)結合,產生兩個分子的帶有磷酸根的三碳化合物3-phosphoglycreate (3-PGA),這個反應是所謂的羧基化(carboxylation);另一個則是將RuBP氧化,產生一分子的3-PGA以及一分子的2 - 磷酸乙醇酸(2-phosphoglycolate)。2 - 磷酸乙醇酸對植物無用,必需消耗能量來回收它,回收的過程被稱為光呼吸(photorespiration)作用。

因為光呼吸作用會消耗能量,對植物來說當然是有害無益;但是偏偏Rubisco就是沒辦法把對氧氣的親和力完全去除。由於Rubisco只能利用溶於水的氣體(不論是氧或二氧化碳),當溫度上昇時氣體對水的溶解度會下降;而二氧化碳因為分子量比氧大,所以溶解度下降得更明顯,造成在氣溫上昇的時候,光呼吸作用會變得更劇烈。

對於溫帶植物或許這個問題只是小事情,但是對於熱帶與亞熱帶的植物來說,光呼吸作用是他們一年到頭都要處理的問題。

於是,某些熱帶與亞熱帶的植物(如:玉米),演化出了C4代謝。C4代謝並沒有把Rubisco給消滅,而是在Rubisco的反應前面,加入了一個濃縮二氧化碳的機制(CO2-concentrating mechanism,CCM)。同時,執行C4代謝的植物把CCM與包含Rubisco在內的整個卡爾文循環(Calvin cycle)分開,將卡爾文循環關到髓鞘細胞(bundle-sheath cell)中,減少Rubisco與氧氣的接觸,使得C4代謝可以成功地將光呼吸作用給消滅。

C4植物的葉片橫切面。
綠色部分是葉肉細胞(mesophyll),圍繞著中心的
維管束(紅色)的紫色部分就是髓鞘細胞。
圖片來源:wiki
因為C4代謝成功地消滅了光呼吸作用,於是他們可以在夏天時無視於外界的高溫,仍然繼續快樂的生長;但是C4植物畢竟是少數,世界上主要的糧食作物,除了玉米是C4植物,其他的小麥、大麥、稻米、大豆...全都是不具有CCM的C3植物。

近年來,因為氣候變遷以及人口增長,使得科學家們想到,如果可以改進這些C3植物的光合作用,讓他們不要消耗這麼多能量在光呼吸作用上,應該可以大大地提升產量吧?可惜的是,要把C3植物改成C4植物並非容易的事,畢竟這牽涉到解剖學上的構造改變;於是有些科學家想到,是否能夠只把跟CCM相關的酵素送進葉綠體中,同時也取代原有的Rubisco,看看是否能使得C3植物有些改變。

最近在康乃爾大學(Cornell University)的研究團隊發表在「自然」期刊上的論文,就是這個想法的體現。研究團隊將藍綠藻(cyanobacteria)的Rubisco以及CCM相關酵素,整堆送進菸草(C3植物)的葉綠體裡面,想要看看是不是能改進菸草的光合作用效率。

等一下!怎不是放玉米或其他高等C4植物?反而放了藍綠藻?

筆者想,如果能放高等C4植物的酵素當然是上上大吉,不過牽涉到的基因太多了,要放進去可能不容易。

C4代謝之一種。圖片來源:wiki
大家可以參考上面的圖,左邊黃色細胞裡面所有的反應,就是高等C4植物的CCM。葉綠體轉殖是比植物細胞轉殖難十倍以上的技術,然後還要放這麼多個基因...筆者想,這是康乃爾研究團隊最後選了藍綠藻的原因。雖然他不是C4植物,但是他也有CCM,因此也具備CCM的酵素;而由於他是較低等的植物,所以CCM的酵素成員沒有那麼多...

於是,研究團隊們將藍綠藻的Rubisco以及CCM酵素轉殖到菸草的葉綠體裡面去,同時也將菸草本來的Rubisco砍掉。

聽起來好像都很不錯,卻沒想到藍綠藻的Rubisco對二氧化碳的親和力,比菸草的Rubisco還要低!因為這樣,使得轉殖的菸草無法在400ppm的二氧化碳的環境下生長(這是目前正常大氣的二氧化碳濃度),必需要提高二十幾倍,到9000ppm才長得起來,而且還長得很慢呢...

怎麼會這樣呢?原來,雖然這些具有CCM的植物,包括C4植物、藻類、以及藍綠藻,雖然他們的Rubisco反應速率比C3植物的要快得多,但是卻無法在加快速率與高親和力(也就是低Km值)之間兼得。於是造成轉殖的菸草無法在大氣環境的二氧化碳中生長,因為它抓不到二氧化碳...

這真的是讓人覺得遺憾萬分,不過,要魚與熊掌兼得,真的是不容易啊...

(臺大科教中心擁有此文版權,其他單位需經授權始可轉載)

參考文獻:

Myat T. Lin,Alessandro Occhialini,P. John Andralojc,Martin A. J. Parry & Maureen R. Hanson. 2014. A faster Rubisco with potential to increase photosynthesis in crops. Nature. doi:10.1038/nature13776

Spencer M. Whitney, Robert L. Houtz and Hernan Alonso. 2011. Advancing Our Understanding and Capacity to Engineer Nature’s CO2-Sequestering Enzyme, Rubisco. Plant Physiol. 155:27-35

留言

這個網誌中的熱門文章

植物是地球的能量工廠

地球上最重要的反應應該就是光合作用(photosynthesis)了,就如植物的頂芽生長點是地球上最重要的組織一般。這是由於地球上的異營生物無不依靠自營生物作為直接或間接的食物來源,而自營生物的養分幾乎都是由光合作用而來。
葉片是獲取能量的小尖兵
自營生物的器官衰老是非常複雜的機制。在秋天撿起一片地上的黃葉,與仍在樹梢上翠綠的葉子相比,會發現黃葉的重量較同等大小的綠葉輕很多;這是因為植物會將衰老葉片中剩餘的、可利用的物質分解後運回,提供其他組織再運用。不若異營生物,由於每一個器官、組織都需要由自己生產的能量來製造,因此自營生物在淘汰老廢器官與組織時,一定會將殘餘的養分盡可能的回收。汰舊換新對所有生物都是一整年的工作,但對於多年生的落葉樹來說,每年春秋二季會發生大規模的迎新去舊,是它們一年兩次的大工程。
當時序慢慢進入秋天時,植物體內可藉由光敏素(phytochrome)感應逐漸加長的黑夜。光敏素是由兩個多肽組成的雙體(dimer),每個多肽有一千多個氨基酸那麼長,並加上一個色素分子(phytochromobillin)。光敏素將季節的信息送到頂芽,頂芽便開始進入休眠;其它的葉片啟動衰老機制、將可以回收的養分盡量回收之後,隨著連接葉柄與莖的薄壁細胞死亡,毫無生氣的葉片因自己重量的垂墜,被拉離開植株,飄落到地面。
這一切雖然看似與光合作用無關,但它卻是背後的影武者。在夏季的尾聲,隨著日照時間減少,植物能進行光合作用的時間縮短;同時,因為太陽的角度逐漸偏斜,在有限時間內,植物能捕捉到的光能也逐漸減少。以經濟的角度來看,光合自營生物此時若仍維持著龐大數量的葉片,並不是一種聰明的做法;於是有些樹木選擇將葉片中的養分回收儲存,同時降低所有的活動來過冬。等到冬去春來,可進行光合作用的時間變長了,加上太陽的角度逐漸轉正,植物以光敏素覺察到黑夜時間逐漸縮短,新芽便開始萌發,葉綠素的合成與葉綠體的發育,讓新生的葉片抹上了一層層的綠意。
由此可知,光合作用需要捕捉光能、以及將光能轉換為化學能的「用具」,並且,這些用具要能夠被恰當地放置在可以接收到足夠光能的地方。除了少數因為生活環境而必須修改基本設計的植物以外,絕大多數植物執行光合作用的主要部位是葉片;而葉片中用來捕捉光能的用具就是光系統(photosystem)。
抽絲剝繭光系統的運作
在葉綠體的類囊體膜(stromal membrane)上,可以…

孔雀秋海棠的光合作用魔術

原產於馬來西亞雨林的孔雀秋海棠(Begonia pavonina),只有在光線極弱的狀況下葉片會出現藍色。當光線夠強的時候,葉片上的藍色就不會出現了。

因為這藍色是如此的美麗,使它得到了「孔雀秋海棠」(peacock begonia)的美名。大家搶著種它,想要看到那美麗的孔雀藍;但到底為什麼要出現這美麗的孔雀藍呢?

通常我們都認為,在葉片裡面除了葉綠素以外的光合色素,都是輔助色素:在光線不夠時,幫忙吸收更多光能;在光線太強時,把多餘的能量發散。所以孔雀秋海棠的孔雀藍,是否也是一種輔助色素呢?

之前的研究已經發現,這些孔雀藍,應該是來自於被稱為虹彩體(iridoplast)的一種色素體(plastid)。虹彩體位於葉片上表皮的細胞中,為葉綠體的變體。在最近的研究發現,這些虹彩體的類囊體(thylakoids)以一種不尋常的方式排列:每疊葉綠餅(grana)由三到四個類囊體組成,厚度約為40奈米;而一疊一疊的葉綠餅之間的距離約為100奈米。


一般的葉綠體,通常葉綠餅的排列是散亂的(如圖);孔雀秋海棠的虹彩體的葉綠餅卻排得如此整齊,有什麼作用呢?

研究團隊測量了20個虹彩體,發現它們的特殊構造賦予它們反射435~500奈米的光波的能力。這個波長正好就是藍光波段的最右邊,與綠光交界的位置。這就是為什麼孔雀秋海棠是藍色的原因吧!

不過,這些虹彩體不只是會反射藍光而已。研究團隊還發現,虹彩體讓孔雀秋海棠吸收較長波的綠光與紅光的能力提升了!這對孔雀秋海棠是非常重要的,因為它們通常在熱帶雨林的地面上生長。

在熱帶雨林裡,光線都被大樹給遮住了,使得地表的光線極弱。弱到怎樣的地步呢?大約是樹冠光線強度的百萬到千萬分之一喔!而且還不只是光線變弱而已,因為雨林中的大樹們把進行光合作用所需的兩個主要波段的光(460奈米與680奈米)都吸收得差不多了,在這樣的環境下,孔雀秋海棠如果不發展出吸收一點綠光的本事,還真的會混不下去。

事實上,因為這些特殊的構造,虹彩體比一般的葉綠體進行光合作用的效率更高。研究團隊藉著測量葉綠體的螢光(葉綠體進行光合作用時,一部份的葉綠素會把吸收的光以暗紅色的螢光發射出去;所以可以藉著測量螢光了解植物進行光合作用的效率)發現,虹彩體進行光合作用的效率,比一般的葉綠體都好。不過,當光線變強的時候,虹彩體的效率就沒有那麼好了;這或許就是為何,當我們把孔雀秋海棠種在光線…

【原來作物有故事】鳳梨 漂洋過海在臺灣發揚光大

作者:葉綠舒、王奕盛、梁丞志

在台灣提到鳳梨,一定會想到鳳梨酥這代表台灣的伴手禮。但是鳳梨其實不是台灣原產的水果喔!鳳梨原產於熱帶南美洲,在哥倫布1493年的第二次航行時於瓜德羅普的村莊中發現後引進歐洲,約於16世紀中葉傳入中國;台灣則是在1605年先由葡萄牙人引進澳門,再由閩粵傳入台灣,至今已有三百多年歷史。

在台灣,鳳梨因為台語諧音「旺來」很吉利而廣受大眾喜愛,但其實鳳梨的名字是根據它果實的型態來的,因為果實的前端有一叢綠色的葉片,讓以前的人覺得很像鳳尾,加上果肉的顏色像梨,所以就取名為「鳳梨」。至於英文的名稱也是因為果實的外型像毬果、而肉質香甜,所以就被取名為「松蘋果」(pineapple)啦!其實鳳梨果實的毬果狀的外觀主要是因為鳳梨是「聚合果」,每顆鳳梨是由200朵鳳梨花集合而成的!而它的學名Ananas則是來自於圖皮語,意思是很棒的水果。

在哥倫布把鳳梨引進歐洲以後,因為它的香甜好滋味讓它大受歡迎;但是身為熱帶水果的鳳梨,在溫帶的歐洲長得並不好!為了要讓王公貴族們吃到鳳梨,十六世紀的園丁們發明了「鳳梨暖爐」:把單顆鳳梨放在由馬糞堆肥做的暖床上的木製棚架,並升起爐火來保持溫暖,好讓鳳梨這熱帶植物可以在溫帶的歐洲開花結果;世界上第一個溫室就這樣誕生了,並由此開啟了歐洲建造溫室的熱潮!

鳳梨不只是改變了歐洲,在日本人到台灣後,嚐到了鳳梨的香甜滋味,便開始推動鳳梨產業。1903年,岡村庄太郎於鳳山設置岡村鳳梨工廠,生產鳳梨罐頭;後來逐漸形成中部以員林、南部以鳳山為中心的鳳梨生產體系。在1938年時,鳳梨罐頭工廠女工竟然佔了全台灣女性勞動人數三分之一以上呢!光復以後台灣的鳳梨產業也曾在1971年登上世界第一,讓台灣被稱為「鳳梨王國」。但是後來不敵其他國家的競爭,已經由外銷罐頭改為多以內銷鮮食鳳梨為主的型態了。

從清朝、日治時代直到現在,台灣的鳳梨品系一直都一樣嗎?當然不是囉!最早的鳳梨被稱為「在來種」,後來日治時代為了製作罐頭方便,從夏威夷引進了開英種;到了1980年以後,因為罐頭外銷敵不過競爭,台灣的鳳梨改為內銷且以鮮食為主,為了挽救鳳梨產業,農改場、農試所便培育出各種不同適合鮮食的鳳梨:包括不用削皮可以直接剝來吃的釋迦鳳梨(台農4號),最適合在秋冬生產的冬蜜鳳梨(台農13號),有特殊香氣的香水鳳梨(台農11號),以及因為果肉乳白色被稱為牛奶鳳梨的台農20號等…