跳到主要內容

發表文章

目前顯示的是 8月, 2017的文章

抓到壞死性真菌的痛腳

跟人一樣,感染植物的病原也有百百種。植物為了抵禦這些病原,當然也要發展出許多不同的對策。感染植物的真菌通常分為兩大類:壞死性(necrotrophic )與生物營養性(biotrophic)。近年有些科學家主張還有第三種「半生物營養性」(hemibiotrophic)真菌,不過還沒有被廣泛地接受。 感染灰黴病菌( Botrytis cinerea )的草莓。 圖片來源: Wiki 這兩種真菌病原有什麼差別呢?它們的差別可大了!因為壞死性真菌要吸取死掉的植物細胞的養分,所以在感染植物後,會很快地造成植物的細胞壞死;而生物營養性真菌需要植物的細胞繼續活著,才能讓它們持續獲取養分,所以就不會那麼快殺死植物的細胞。所以從植物抵禦的角度看來,這兩種病原不可能用同一套方法來對付:例如經由水楊酸(salicylic acid)啟動的細胞程序性死亡(PCD,programmed cell death)用來對付生物營養性的病原(如導致白粉病的布氏白粉菌 Blumeria graminis )很有效,但用來對付灰黴病菌( Botrytis cinerea )就會適得其反。 最近西班牙的農業基因組學研究中心(CRAG,Centre for Research in Agricultural Genomics)在發展研究植物SUMO化(SUMOylation)機制的方法時,發現SUMO化對於植物抵禦壞死性真菌入侵有重要的角色。 什麼是SUMO化呢?SUMO化就是將蛋白質與SUMO進行連結,在動植物裡面都可以找到這個機制;而SUMO是小分子類泛素修飾蛋白(Small Ubiquitin-like Modifier)的簡稱。雖然它與泛素(ubiquitin)都是經過酵素的作用加到蛋白質上面,但與泛素化(ubiquitination)不同的是,被SUMO化的蛋白質只會導致它與不同的蛋白質發生互動;而泛素化除了可以改變互動成員外,最有名的效應應該就是導致被它修飾的蛋白質被分解。除此之外,SUMO蛋白還比泛素多了二十幾個胺基酸。 蛋白質要被SUMO化必需要經過三個酵素。簡而言之,第一個酵素(E1)將SUMO腺苷化(adenylation)並讓它與第二個酵素(E2)發生連結,然後第二個酵素與第三個酵素(E3)再將SUMO連結到需要被SUMO化的蛋白質上。可能是因為E1與E2在

【原來作物有故事】菠菜 營養十足的鸚鵡菜

菠菜。圖片來源: Wiki 吃過清炒菠菜、菠菜沙拉嗎?菠菜俗稱菠薐、鸚鵡菜、紅根菜及飛龍菜,是原產於中亞與西亞的莧科植物。菠菜大約在兩千年前在波斯被馴化,在公元647年經由尼泊爾傳入中國,被稱為「波斯菜」,而後轉稱為「菠菜」;英文的spinach也被認為是來自波斯文。至於「菠薐」這個名稱可能是來自菠菜的尼泊爾文發音。 為什麼菠菜又叫做鸚鵡菜呢?傳說中清高宗乾隆皇帝有一次在江南微服私訪時迷了路,越走越餓,看到前面有戶農家,便闖了進去;當時正是吃飯時間,農婦便招待他吃了煎豆腐與炒菠菜。乾隆皇帝覺得非常好吃,臨走前問農婦這是什麼?農婦就順口說煎豆腐是「金磚白玉板」、菠菜是「紅嘴綠鸚哥」,所以後來菠菜就多了這個名字了。不過這個故事第一次出現,是在明朝的小說裡,故事的主角是明成祖;也就是說,乾隆與菠菜的故事不過是把明朝的小說拿來張冠李戴而已!因為菠菜的根帶些紅色、莖葉是綠色,文人的巧思將它命名為「紅嘴綠鸚哥」,再加上這些故事,就成了鸚鵡菜了! 菠菜在公元827年傳入歐洲的西西里島,十世紀時傳到地中海國家、十二世紀到西班牙,到十五世紀時傳遍全歐洲。目前世界上最大的菠菜生產國是中國,約佔全世界的91%;其次是美國與日本。台灣菠菜最大的產地在雲林縣,約佔全台灣的七成。在台灣,雖然菠菜一年四季都可以買到,但因為菠菜喜歡比較冷涼的氣候,所以冬天的菠菜才是「當令」的菠菜,長得又漂亮又健康、營養也豐富! 菠菜含有豐富的維生素A、B 2 、B 6 、C、E、K、鈣、鉀、錳、鎂、鐵等,最近由中國與美國組成的研究團隊,將菠菜的基因體定序後,分析了總共120不同品系的野生與栽培種菠菜,由此確定了菠菜的祖先是土耳其的野生菠菜。在菠菜出波斯以後,栽培種菠菜便分為兩個支線:東亞、中/西亞。中/西亞的一支傳入歐洲後,又隨著歐洲人渡海到美國;東亞的一支則在中國開枝散葉。由於大部分菠菜是雌雄異株(也就是說有「男生」菠菜跟「女生」菠菜),與雌雄同株的自交作物如番茄、西瓜、黃瓜相比,即使是栽培種的菠菜,其基因多樣性也相對比較高。歐洲/美國種的菠菜葉子是橢圓型的,東亞種的菠菜葉子是有刻紋的裂葉種,一看就知道不一樣喔! 菠菜可在溫帶與亞熱帶氣候區生長,在1929年美國的大蕭條時期,菠菜因為生長快速、營養豐富而受到重視,但是因為菠菜含有較多的草酸(約為百分之一左右),使得它帶有澀味,讓大家有些

沒有髓鞘細胞(bundle sheath cell)的C4植物

只要學過光合作用(photosynthesis)的人,應該都知道卡爾文循環(Calvin cycle)除了傳統的 C3 反應以外,還有兩種變體:C4 與 CAM。 CAM 植物包括了仙人掌與景天科的多肉植物,他們的特徵就是只在晚上打開氣孔抓空氣中的二氧化碳,轉化為四碳的有機酸存在液泡(vacuole)中,白天則將液泡中的有機酸分解產生二氧化碳來進行卡爾文循環。而 C4 植物則具備有所謂的「克蘭茲解剖構造」(Kranz anatomy):表皮下有被葉肉細胞(mesophyll,下圖綠色)密密包圍的髓鞘細胞(bundle sheath cells,下圖紫色),髓鞘細胞的中心則是維管束(下圖紅色)。 C4 植物(玉米)葉片的橫切面。圖片來源: Wiki 從1970年代開始,大家對 C4 植物的認知就是:他們這特殊的構造與其生理學息息相關。原來 C4 植物生長在熱帶與亞熱帶,由於高溫的環境容易導致光呼吸作用(photorespiration)的發生,而光呼吸作用會消耗植物辛苦收集來的能量;而 C4 代謝由於把造成光呼吸作用的「禍首」 核酮糖-1,5-二磷酸羧化酶/加氧酶(Ribulose-1,5-bisphosphate carboxylase/oxygenase,RuBisCo) 關進髓鞘細胞中,成功的消滅了光呼吸作用;這使它們不僅在熱帶與亞熱帶得以存活下來,甚至還取得了競爭上的優勢(關於 C4 植物詳見: 為什麼「種豆南山下,草盛豆苗稀」? )。 因此,只要一想到 C4 植物就一定會想到「克蘭茲解剖構造」。是否有不具備「克蘭茲解剖構造」的 C4 植物呢?如果沒有髓鞘細胞,又要如何避免 RuBisCo 與氧氣接觸而產生光呼吸作用呢?想想好像蠻困難的! 不過,就像電影「侏羅紀公園」裡面的名言:「生命自會找到出路」,在2002年,俄羅斯的研究團隊發現一種很特別的 C4 植物   Bienertia cycloptera  ,竟然沒有髓鞘細胞,也就是說,它沒有「克蘭茲解剖構造」! Bienertia 屬植物。圖片來源: Wiki 沒有髓鞘細胞的植物要如何進行 C4 代謝呢?研究團隊發現,那胖胖而多肉的葉片由一到三層的葉綠組織(chlorenchyma,即含有葉綠體的薄壁細胞)以及位於葉片中心的儲水細胞構成。但是它的葉綠組織卻長得很特別:細胞

【原來作物有故事】夏日水果之王:芒果

芒果。圖片來源: Wiki 台灣的夏季水果,除了西瓜以外,就是芒果了!不論是新鮮芒果、芒果冰沙、芒果冰,那甜蜜蜜的滋味,真叫人垂涎三尺!而以未成熟的「土芒果」醃製而成的「情人果」(以前叫「檨仔青」)也是很受歡迎的蜜餞。只是,芒果並不是台灣原產喔!芒果是原產於印度、巴基斯坦、菲律賓與孟加拉的漆樹科熱帶果樹,中文的「芒果」是來自於英文Mango 的音譯,而英文又是源自於馬拉雅拉姆語(印度的官方語言之一)。根據文獻記載,印度大約四千多年前就開始種芒果了;到紀元前四、五世紀傳入馬來群島,十六世紀時葡萄牙人把芒果帶到全世界。2014年全世界生產最多芒果的國家是印度,第二名是中國、第三名是泰國。在印度的泰米爾納德邦,芒果、香蕉和菠蘿蜜被稱為三種皇家水果。 雖然芒果遍佈全世界是葡萄牙人的功勞,但台灣的芒果卻是在1561年(明嘉靖40年)由荷蘭人引進的,當時引進的是現在俗稱的土芒果(在來種),因為由荷蘭人帶來,所以被俗稱為「番檨」。到了清朝,有不少從大陸來台灣的人都吃過芒果。在1698年(清康熙年間)郁永河的《裨海紀遊》中,也提到芒果。由於皇帝沒吃過芒果,當時又沒有冷藏技術,於是在1719年(康熙五十八年)4月29日福建巡撫呂猶龍進貢了一些芒果乾給皇帝,還特別說明「味甘微覺帶酸。其蜜浸與鹽浸,俱不及本來滋味,切條曬乾者,微存原味。」;卻沒想到皇帝一點也不欣賞,還說:「看過了,沒什麼用的東西,不用再送來」!看到這裡,真想幫康熙皇帝點一盤芒果冰,再透過時光機送到他面前呢!以產量而論,2014年芒果是世界第七大水果;在芒果前面還有番茄、西瓜、蘋果、葡萄、柳橙、椰子。在台灣,芒果是種植面積第三大、產量第四大的水果。不過這些並不都是「土芒果」喔!目前台灣生產的芒果,將近九成不是土芒果,而是愛文、金煌等「改良種」芒果。 這些芒果是怎麼來的呢?愛文芒果是農復會在1954 年自美國佛羅里達州引進的,同時還引進了海頓、凱特等品種,逐漸種植、改良、生產及推廣到全台灣的。愛文芒果因為色澤鮮艷、皮薄肉細,纖維少、甜中帶酸,受到大家的喜愛。目前全台灣種的芒果有80%是愛文芒果,而且它也是台灣芒果外銷的主力。2014年愛文芒果的外銷僅次於鳳梨,而台南玉井區與南化區是名符其實的芒果之鄉。 第一個成功栽種愛文芒果的人是台南市玉井區斗六仔部落的鄭罕池先生。1962年,農復會試種由佛羅里達引進的