跳到主要內容

發表文章

目前顯示的是有「藍光」標籤的文章

藍光(blue light)秘密:揭開大豆葉片衰老的神秘面紗(簡易版)

  大豆。圖片來源: 維基百科 植物,就像我們,也會「感覺」到外界的變化,透過一些特殊的「感覺器官」來調整自己的生長。今天,我們就來談談植物是如何感知光的顏色,特別是藍光,以及這對它們生長的重要性。 你知道嗎?植物能「看見」光!雖然它們沒有眼睛,但它們有一種叫做光敏素(phytochrome)的特殊蛋白質,就像是它們的「眼睛」,幫助它們感知周圍的光線,特別是紅光。但是,植物不只對紅光敏感,它們也能感知到藍光,而且藍光對它們來說非常重要,所以植物也有感應藍光的光受器:隱花色素(cryptochrome,CRY )! 你可能會問,藍光對植物有什麼作用呢?實際上,藍光對植物的發育有很大影響,包括它們如何向光移動(趨光性),以及何時開花。最近,科學家在研究大豆時發現了一些有趣的事情。他們發現一種名為 GmCRY1b 的隱花色素,它在控制大豆葉子老化的過程中起著重要作用。 這個 GmCRY1b 能和一些特殊的蛋白質,像是 GmRGAa 和 GmRGAb ,互相作用,進而影響葉子衰老的速度。更有趣的是,在藍光的照射下,這些蛋白質的數量會減少,這暗示它們在由 GmCRY1b 調控的葉子衰老過程中扮演了一個角色。 為了深入了解這個過程,科學家進行了一系列實驗。他們用不同強度的藍光照射大豆葉片,發現在低強度的藍光下,葉子的衰老速度會加快,葉綠素的含量會降低,一些與老化相關的基因也會更活躍。這告訴我們,藍光是影響大豆葉子衰老的一個重要因素。 接下來,科學家用CRISPR技術(一種基因編輯工具)剔除了所有的隱花色素,改變了大豆對藍光的感應能力。他們發現,當大豆對藍光的感應能力降低時,葉子會更早地開始衰老,顯示出藍光感應器在控制葉子衰老方面扮演著重要的角色。 不僅如此,科學家還發現 GmCRY1b 可以和DELLA蛋白質(如 GmRGAa 和 GmRGAb )互動,這些互動是在藍光下發生的。這意味著,當藍光照射到植物上時, GmCRY1b 會「碰到」DELLA蛋白,然後它們一起在葉子衰老的過程中發揮作用。 還有一個有趣的發現是,這些互動似乎是在植物細胞核內發生的。細胞核是細胞的「指揮中心」,控制著細胞的所有活動。所以,這暗示著 GmCRY1b 和DELLA蛋白在細胞核中一起工作,影響著植物如何回應藍光。 但是,這一切又和老化有什麼關系呢?研究發現,植物中的一種激素...

藍光(blue light)秘密:揭開大豆葉片衰老的神秘面紗

  大豆。圖片來源: 維基百科 雖然紅光對光合作用很重要,所以植物有光敏素(phytochrome)來偵測紅光,但是植物不只會看見紅光與紅外光,也會看見藍光。藍光可以影響植物的發育,包括趨光性與開花。藍光受器稱為隱花色素(cryptochrome,CRY )。 最近針對大豆的隱花色素進行的研究發現,大豆中的隱花色素 GmCRY1b 參與調節大豆葉片的衰老過程。研究團隊發現,  GmCRY1b  能夠與 DELLA 蛋白質 GmRGAa 和 GmRGAb 進行互動,並通過調節 GmWRKY100 基因的轉錄來影響大豆葉片的衰老。此外,研究團隊還發現, GmRGAa 和 GmRGAb 蛋白質的表現量在藍光照射下明顯下降,這顯示它們可能參與了   GmCRY1b  調節大豆葉片衰老的過程。這些發現有助於深入了解植物葉片衰老的調節機制,並為進一步研究植物的生長和發育提供了重要的參考。 研究團隊為了要瞭解隱花色素在大豆中的角色,他們進行了多個實驗。 他們使用兩層黃色濾光片來模擬低藍光(LBL)條件,而同一株幼苗的另一片對面的單葉則被覆蓋了兩層透明濾光片,作為對照組。這樣的實驗設計旨在模擬不同藍光强度下的條件。 研究團隊發現,接受低藍光(LBL)處理的葉片顯著地加速衰老,其葉綠素含量較低,而衰老標記基因 GmSAG12 、 GmSAG13 和 GmSAG113 的表現量較對照組更高。在低藍光下若再提供紅外光,葉片顯示出更加明顯的衰老。這些結果顯示,LBL是大豆中促進葉片衰老的重要遮蔭信號,並且通過一個獨立的途徑與紅外光一起誘導葉片衰老。 接下來,研究團隊想知道大豆的隱花色素是否參與調節大豆中的光誘導葉片衰老。大豆有四個CRY1和三個CRY2。他們使用CRISPR技術生成了CRY1四重突變株( Gmcry1s-qm )和CRY2三重突變株( Gmcry2s-tm )。在長日照和自然田間條件下,無論是CRY1四重突變株還是CRY2三重突變株都比野生型衰老得更快。CRY1四重突變株的葉綠素含量明顯下降,子葉和葉片衰老指數較高,衰老標記基因的表現量也較高,比CRY2三重突變株更明顯,這顯示大豆的隱花色素在控制大豆葉片衰老中發揮主導作用。相反的,高量表現  GmCRY1b 表現出較緩慢的葉片衰老...

隱花色素2(CRY2)如何影響植物的葉綠素含量

  圖片作者:ChatGPT CRY2(CRYTOCHROME 2)是一種植物藍光受器,在植物對光環境的感知和反應中扮演著重要角色。 CRY2能夠感應藍光的存在並在植物細胞內傳達光信號。它包含兩個主要區域,一個是光敏色素同源區(PHR),負責光的感應;另一個是CRY C-terminal Extension(CCE),在與其他蛋白質的交互作用中扮演重要角色。 在光照條件下,CRY2會被活化,進而影響植物的多種生理過程,包括但不限於葉綠素的合成、開花時間的調控、光週期感應和生長發育。 CRY2活化後能與其他蛋白質進行互動,影響這些蛋白質的功能,從而在植物對光照的反應中發揮核心作用。 總而言之,CRY2是植物光感應系統的一個重要組成部分,對於植物適應光環境變化和正常生長發育具有關鍵作用。 最近的一項研究主要關注了CRY2、SPA1和FIO1這三種蛋白質在阿拉伯芥( Arabidopsis thaliana )中的相互作用,特別是在光照條件下這些蛋白質如何影響植物的葉綠素平衡和mRNA的甲基化。 研究團隊發現,作為光受器的CRY2在光照下被活化,並與SPA1和FIO1形成三分子凝聚體。這種互動對植物對光線的反應非常重要,包括影響葉綠素的合成。當研究團隊使用CRY2D387A(對光不敏感的CRY2突變體,其第387個胺基酸發生突變)時,它不會像正常的CRY2那樣在光照下形成凝聚體,顯示這三者的互動需要CRY2被光活化。 SPA1與CRY2會一起調節光依賴的mRNA甲基化。當缺少SPA基因時,如 spa123 和 spa134 突變體,植物顯示出低葉綠素性狀,顯示SPA基因在維持葉綠素平衡中非常重要。此外,這些突變株在藍光引起的mRNA甲基化方面也表現出受損,顯示SPA基因對於光感應下的mRNA甲基化過程的重要性。因此,當缺少SPA基因時,植物的葉綠素合成和mRNA甲基化過程可能受到影響,導致植物顏色變淡。 FIO1是一種mRNA甲基轉移酶,與CRY2的CCE區域發生互動。當CRY2活化後,它會與FIO1互動並將其活化。被活化的FIO1促進了特定mRNA(尤其是它們的3′非轉譯區)的m6A甲基化,使葉綠素的合成增加和其他光依賴過程活化。 總之,這項研究顯示了植物如何在分子層面上回應光環境的變化,特別是在調節葉綠素合成和基因表達方面...