跳到主要內容

發表文章

目前顯示的是有「農業生物科技」標籤的文章

御穀(Pennisetum glaucum)是否能解決暖化造成的糧食問題?

御穀(珍珠粟)。圖片來源: Wiki 生長在臺灣的我們,對御穀(珍珠粟, Pennisetum glaucum (L.) R. Br.)應該都相當陌生;雖然根據維基百科,御穀曾經在魏晉時傳入中國,但似乎沒有受到太多注意。不過同樣被稱為小米(millet)的黍( Panicum miliaceum L.)與粟( Stearia italica L.,foxtail millet)在中國都是重要的穀物,雖然在漢朝前後黍與粟逐漸被小麥與稻米取代,但直到明清仍是重要的救荒穀物。而在台灣,粟(小米)也是台灣原住民重要的穀物。 發源於西非薩赫爾(Sahel)地區的御穀,與粟同為C4植物。不過由於御穀比粟更耐旱,可以在年雨量只有250毫米的地區開花結果;因此,目前全世界有九千萬個農夫以種植御穀維生,種植面積達兩千七百萬公頃。雖然目前的資料看來御穀的產量極低(每公頃九百公斤),但部份的原因來自於它總是被種在雨量極少、其他穀類無法生長的地區的緣故。御穀蛋白質含量高(8-19%)、澱粉含量低、纖維含量高,鐵、鋅含量高於米、麥、玉米、高梁,從現代人注重養生的飲食角度看來,的確是很好的食物。 由於御穀耐旱、耐熱,且在攝氏42度以上還能開花結果,在全球預估至少將增溫攝氏2度的此刻,科學家們將眼光投向了它。透過許多實驗室的通力合作,御穀的基因體終於在今年被定序完畢。 御穀的基因體大約是1.79千兆鹼基對(1.79 Gb),共有38,579個基因。如同許多被馴化的穀物,御穀的基因體也有相當比例的重複性序列(77.2%),且如同其他作物,以LTR反轉錄轉位子居多。與其他禾本科的作物比較,御穀的重複序列比例僅低於玉米(85%);而同樣被稱為小米的粟只有61%為重複序列。 以御穀的預測蛋白質序列與十種目前已完成定序之作物(阿拉伯芥、二穗短柄草、香蕉、大麥、粟、玉米、稻米、高梁、大豆、麵包小麥)進行比對分析後,如同預料的,御穀與粟之間的親緣最近(74.16%)、而與阿拉伯芥最遠(61.88%)。分析御穀的基因發現,與角質(cutin)、木栓質(suberin)、蠟合成的相關基因組都有明顯的擴充;這是否就是御穀之所以特別耐旱的原因呢?過去的研究發現,可以合成更多角質的阿拉伯芥的確會變得比較耐旱,而蠟質合成減少的稻米對乾旱的耐受度下降,因此由御穀的基因分析而推論這些基因的擴充應是...

蘋果(Malus domestica)的基因密碼

新疆野蘋果的果實。圖片來源: Wiki 你喜歡吃蘋果嗎?你常吃蘋果嗎?現在在台灣的超級市場、水果攤,最常見的水果之一就是蘋果了。常見的品系包括富士、加拉、五爪、翠玉、金冠等。但一開始在台灣,蘋果並非如此常見。那時候的蘋果幾乎都是進口,在一支冰棒只要五毛錢的時代,一顆五爪蘋果要100元喔。  由於冷藏與儲存技術的進步,蘋果在台灣已由一顆價值四斤米成為不分貧富都享受得起的水果了。根據聯合國農糧署的資料,2014年全世界生產8,463萬噸蘋果,僅次於番茄、香蕉與西瓜;如果不計入番茄,蘋果是世界第三大水果。 蘋果( Malus domestica )的祖先是中亞的新疆野蘋果( Malus sieversii ),全球約有35種不同蘋果屬植物,其中只有三種人類可食:蘋果、 M. sylvestris 、新疆野蘋果。在中亞發源的蘋果,隨著採食的動物向東到中國,發展成綿蘋果等;向西發展為現在的富士、加拉、五爪等洋蘋果。洋蘋果是目前蘋果屬中最廣被栽培的種類,全世界大約有7,500不同品系的洋蘋果(以下簡稱蘋果)。 由於蘋果是這麼重要的水果,它的基因體當然非了解不可囉!經由許多不同國家的研究者同心協力,蘋果的基因體已於2010年定序完成。但是蘋果有這麼多不同品系,到底是挑選什麼品系來定序呢? 研究團隊在眾多品系中挑選了金冠(黃元帥,Golden Declicious)。金冠這品系雖然在台灣也有販售,但是受歡迎的程度遠不如富士(FUJI);讀者們一定會覺得怎麼不挑選富士呢? 挑選金冠主要是因為金冠是加拉(Gala)蘋果的親本之一,也是超過20種不同品系蘋果的親本。另外,雖然台灣的蘋果市場由富士獨霸江湖,但在美國富士不過是老三、加拉才是老大。因此,當然要挑選金冠囉。(加拉在台灣也很受歡迎,有另一個商品名為「小富士」。) 定序的結果發現,跟其他作物一樣的,在蘋果總共七億四千二百三十萬鹼基對(742.3 Mb)的基因體中,有67%是由重複序列(repetitive elements)組成;這個比例與茶樹相當、比菠菜低。在這些重複的序列裡,蘋果的去氧核糖核酸轉位子(DNA transposon)是目前所知比例最低的。 雖然學界認為蘋果的祖先應是新疆野蘋果,由於 M. sylvestris 與蘋果之間也頗相似,因此研究團隊也趁此機會一併分析了12個蘋...

抓到壞死性真菌的痛腳

跟人一樣,感染植物的病原也有百百種。植物為了抵禦這些病原,當然也要發展出許多不同的對策。感染植物的真菌通常分為兩大類:壞死性(necrotrophic )與生物營養性(biotrophic)。近年有些科學家主張還有第三種「半生物營養性」(hemibiotrophic)真菌,不過還沒有被廣泛地接受。 感染灰黴病菌( Botrytis cinerea )的草莓。 圖片來源: Wiki 這兩種真菌病原有什麼差別呢?它們的差別可大了!因為壞死性真菌要吸取死掉的植物細胞的養分,所以在感染植物後,會很快地造成植物的細胞壞死;而生物營養性真菌需要植物的細胞繼續活著,才能讓它們持續獲取養分,所以就不會那麼快殺死植物的細胞。所以從植物抵禦的角度看來,這兩種病原不可能用同一套方法來對付:例如經由水楊酸(salicylic acid)啟動的細胞程序性死亡(PCD,programmed cell death)用來對付生物營養性的病原(如導致白粉病的布氏白粉菌 Blumeria graminis )很有效,但用來對付灰黴病菌( Botrytis cinerea )就會適得其反。 最近西班牙的農業基因組學研究中心(CRAG,Centre for Research in Agricultural Genomics)在發展研究植物SUMO化(SUMOylation)機制的方法時,發現SUMO化對於植物抵禦壞死性真菌入侵有重要的角色。 什麼是SUMO化呢?SUMO化就是將蛋白質與SUMO進行連結,在動植物裡面都可以找到這個機制;而SUMO是小分子類泛素修飾蛋白(Small Ubiquitin-like Modifier)的簡稱。雖然它與泛素(ubiquitin)都是經過酵素的作用加到蛋白質上面,但與泛素化(ubiquitination)不同的是,被SUMO化的蛋白質只會導致它與不同的蛋白質發生互動;而泛素化除了可以改變互動成員外,最有名的效應應該就是導致被它修飾的蛋白質被分解。除此之外,SUMO蛋白還比泛素多了二十幾個胺基酸。 蛋白質要被SUMO化必需要經過三個酵素。簡而言之,第一個酵素(E1)將SUMO腺苷化(adenylation)並讓它與第二個酵素(E2)發生連結,然後第二個酵素與第三個酵素(E3)再將SUMO連結到需要被SUMO化的蛋白質上。可能是因為E1...

該不該種基改作物?

農桿菌(左上)與植物細胞(右下)。 圖片來源: Wikipedia 從1994年,第一個上市的基改作物--蕃茄一號(Flavr Savor)開始,基改作物(GMO,genetically modified organism)在這個地球上已經超過了20年。在這中間,地球村的居民們接受者有之、喜愛者有之、懷疑者有之、憎惡者有之,但是究竟該不該種植基改作物?要討論該不該種,要先從究竟基改作物是為這個世界帶來好處多,還是壞處多這個最基本的出發點來看。 要做通盤檢討可不容易。在2016年初,美國國家科學院出版了一本厚厚的報告,檢視了許多關於基改作物的研究。雖然目前在市面上的基改作物從玉米、黃豆、棉花、白花芥到白楊、蘋果等共有十種;而牽涉到的基因包括抗蟲、抗除草劑、提升營養價值、抗褐變等,但除了抗蟲(帶有蘇力菌的結晶蛋白,俗稱Bt 蛋白)與抗除草劑(帶有抗嘉磷塞基因)這兩大品系之外,帶有其他基因的基改作物,不論是種植的面積或產量都很少(抗褐變的蘋果2015年才剛被核准),相關的測試也都不多。因此,這篇報告主要針對的是帶有Bt 蛋白與/或抗嘉磷塞基因的基改作物。 他們得到的結論是: 一、在食用的危險性上,雖然在動物實驗(主要使用齧齒類,也就是大鼠或小鼠)中,因為目前為國際所共同接受的實驗測試並不需要使用很多的樣本,讓委員們覺得不論結果如何顯示,都很難導向有或無影響;但由於有相當數量的研究團隊都進行過實驗,加上多年來家禽、家畜都是食用以基改玉米、黃豆為原料所製作的飼料,因此委員會的結論是:目前看不出人類食用有任何可能的風險。 二、在致癌的風險上,委員會比較了過去二十年美加地區與歐洲的癌症發生率與癌症類型變化。由於歐盟一直都禁止進口含有基改成分的食品、也不允許種植基改作物,將這兩大地區進行比較,應該可以看出可能的差異。結果是,不論在癌症發生率與癌症類型變化上,兩大地區差異並不顯著。 三、在導致過敏、以及與過敏原相關的病症(如乳糜瀉、自閉症等)上,目前在標準的抗原性測試上看不出差異。不過委員會認為,因為標準的抗原性測試是將基改作物在模擬人類體內的消化液中測試是否會被消化,如不能被消化就有可能導致過敏;但由於現代人很多都有胃酸分泌不足的問題,所以標準測試是否就能回答這部分的問題,仍有待商榷。至於乳糜瀉或自閉症,委員會在檢視二十年前與最近二十年、以及比較美加與...

綠肥(green manure)好?輪作好?

豆類作物可以作為綠肥,這在農業上已經廣被應用了。事實上,中國在漢朝時便已經發展出複雜的輪作系統,將土地分成三份,第一年夏天第一塊地種黍、第二塊地種小米、第三塊地種大豆;每一塊地以黍→小麥→大豆→小米的順序輪作,田地的養分會因為有大豆加入輪作而不至於缺氮,而每年都可以有小米、黍、大豆、小麥可吃(1)。 不過,近代的綠肥,卻是將豆類作物(pulse crop,泛指一年生的豆科植物,2)種在田地裡,在開花後、結子前將它們的莖與葉割下後,將莖葉耕入土中或是留在土壤表面作為覆蓋。次年在田地裡種植其他非豆類作物時,去年的豆類作物便「化做春泥更護花」了! 在這樣的操作下,所選擇的豆類作物便不一定要是大豆、蠶豆這類可以食用的豆類作物了;只要是豆科一年生的植物都可以採用。 但是,這樣的操作,種植綠肥的那段時間,農夫是沒有收入的。難道綠肥真的就只能夠當作肥料使用嗎?與漢朝的老法子相比,究竟是把豆類拿來輪作好,還是直接當作綠肥好呢? 蠶豆( Vicia faba )。圖片來源: wiki 加拿大農業及農業食品部萊斯布里奇研究中心(Agriculture and Agri-Food Canada Lethbridge Research Centre)的研究團隊,比較將豌豆( Pisum sativum )、蠶豆與野豌豆(chickling vetch, Lathyrus sativus )作為綠肥,或是列入輪作系統,兩種不同的操作對於往後數年土壤中氮與碳含量變化的影響(3)。 研究發現,以豆類植物作為綠肥時,超過百分之八十的氮與碳都在第一年釋放到土壤中了。第三年以後,只有百分之三到五的氮與碳釋放出來。相對的,當我們把豆類植物列入輪作系統時,雖然第一年釋放的氮與碳較少(百分之七十的碳、百分之六十三的氮),但是到了第三年,還是有不少的氮與碳(氮百分之十三到十六,碳百分之九到十八)釋放到土壤裡。 野豌豆。圖片來源: wiki 除此之外,豌豆、蠶豆與野豌豆裡面,固氮效果最好的是蠶豆與野豌豆;尤其當把蠶豆納入輪作時,能固定的氮量更高。考慮到蠶豆是很好的食物(蠶豆症患者除外),研究團隊建議可以把蠶豆納入輪作系統,而非只充作綠肥使用。如此一來,農夫可以有蠶豆作為收成的一部分,比單純將豆類作物當作綠肥的收益更高;且蠶豆在種植後數年,都會持續釋放出氮與碳,農夫也可以調...

植物品種改良新技術:RTDS

最近這些年,基改作物(GMO,genetically modified organisms)引起非常多的討論。反對它的理由主要就是因為,現在的基改技術總是牽涉到外來基因:如抗農達作物有農桿菌( Agrobacterium tumefaciens )基因、抗蟲作物則有蘇力菌( Bacillus thuringiensis )基因,這些都不是原來存在於植物中的序列,因此引發了許多疑慮。 也因此,歐盟一直都沒有核准基改作物進口。但是,最近位於聖地牙哥的 Cibus (拉丁文意為「食品」)生技公司的新方法,可能會使歐盟改變主意。 Cibus在2001年設立,致力於新的植物品種改良方法。他們發明了一種新的技術,稱為RTDS TM (Rapid Trait Development System)。目前他們已經使用這個技術,開發了對磺酰脲類除草劑(sulfonylurea herbicides)有抵抗力的白花芥(SU Canola TM ),也已經獲得美國與加拿大的許可。 RTDS TM 究竟是什麼呢?在Cibus網頁上有簡單的解說: 圖片來源: Cibus網頁 簡單來說,RTDS TM 就是使用一個稱為GRON的聚核苷酸片段(Gene Repair Oligonucleotide,GRON),上面帶有要改變的序列,與植物的基因體混合。混合後,接下來植物便會依照GRON上的序列來修改自己的基因體,然後~大功告成了! 說起來簡單,但是最難的部分就是要讓植物依照GRON上的序列來修改自己的序列。對基因修復(gene repair)稍微有概念的讀者都知道,因為原來的序列上有標記(如:甲基化)來幫助生物知道這是「原來的」序列(正本),所以基因修復都會依照原來的序列。但是Cibus卻有辦法讓植物修復基因時,不是依照自己原來的序列,而是照著GRON上的序列來進行。這是了不起的地方,應該也是他們的專利技術核心所在。 由於沒有使用農桿菌、基因槍,因此Cibus認為他們的RTDS TM 技術不是基改,而是「基因編輯」(gene editing);所以SU Canola TM 也不是GMO。不過,雖然德國(對基改作物相當不友善的國家)也不認為Cibus的產品是GMO,但是其他團體(如綠色和平組織)還是對這個技術有疑慮。 因為這個技術是專利,筆者能在網路上查到的資料...