跳到主要內容

從哈伯法(Haber-Bosch Process)說起

自從幾年前開始教通識課以後,對於許多課程要怎麼教,開始有了不同的想法。怎麼說呢?一般專業課程總是強調「專業」,舉個例子好了,學過國高中化學的同學應該都知道哈伯法(Haber-Bosch Process),在高溫高壓下以鐵粉做為催化劑將氮氣與氫氣轉化為氨(ammonia):

N2 + 3H2 → 2NH3

通常化學課的時候,老師只會提到,因為氮氣(N2)的兩個氮原子之間是三鍵,所以要打開氮氣很不容易;因此不但要用高溫高壓,還要用鐵粉當催化劑...

然後?就沒有了。講完了。

但是,哈伯法偉大的地方就只是這樣嗎?哈伯(Fritz Haber)因為發明了這個方法,得到1918年的諾貝爾化學獎。難道就是因為他成功的打斷了氮-氮三鍵而已嗎?

哈伯(Fritz Haber),圖片來源:wiki

當然不是。哈伯法的重要性在於,從此人類打開了以人工提高作物產量的大門,農作物的產量從此大大的提高。

當然,產量提高其實也是有限度的,在植物的營養上,有個名詞叫做「關鍵濃度」(critical concentration)。當土壤中的養分低於這個濃度時,植物的生長與養分的濃度成正比;超過這個濃度以後,植物的生長跟養分的濃度就不成正比了,也就是說,用再多也沒有明顯的效果。

但是,在過去只能使用天然肥料(動物的屍體、糞尿、植物的落葉等)的時代,由於天然肥料必需要等待微生物分解(這部分在堆肥時已經大致完成),再經過土壤中的微生物將其中含氮成分分解為硝酸根(nitrate,NO3-)與銨離子(NH4+)後,才能為植物所吸收,因此效果緩慢。加上為了方便起見,農人們總是會以單作(monoculture)的方式來種田,這種在大片的土地上種植單一作物的方式,很容易會使土壤缺少某些特定的養分(尤其是氮與磷),所以在哈伯法還沒有出現以前,要提高土壤內的氮濃度,除了使用天然肥料之外,就只剩下使用綠肥,或是與豆科植物輪作了。

但是,這些方法,都不能使土壤中的氮的濃度超過關鍵濃度;因此,當哈伯法出現之後,農夫將化學肥料施放在田裡,立刻有了奇效--農作物的產量大大的提升。加上育種改良以及殺蟲劑、除草劑的使用,20世紀小麥與稻米的產量提升了8-10倍(平均產量是4倍)。

但是哈伯法對於科學界的貢獻,並不僅僅在於農作物產量的提升;在哈伯發明化學固氮之前,一直有一派學說認為,這些在生物體中的化合物,只有生物才能合成(也就是所謂的生機論Vitalism)。雖然生機論在科學上的地位在1828年在維勒(Friedrich Wöhler)合成尿素以後,已經岌岌可危;但是直到哈伯法出現以後,生機論才不再被提起。

但是哈伯法對全人類最大的貢獻,還是在於:從此想要多少氮肥,就可以製作多少氮肥。雖然在十九世紀Sach等人的研究,已經使大家了解,要能夠正常的生長與繁殖,植物需要17種元素(稱為必需元素essential element);但是其中最關鍵的氮與磷,卻始終無法足量提供給植物。

但是,大量的施放氮肥,卻造成了另一個效應:死亡海域(Dead zone)。

死亡海域最早出現在1970年代。由於化肥的大量施用早在1930年代就開始了,因此也花了一些時間去釐清到底是怎麼回事。簡單來說就是,大量施放氮肥(主要是硝酸根)與磷肥(磷酸根)到土壤中,但是土壤主要是由矽酸鋁顆粒構成,也是帶負電的,所以同性相斥使得氮與磷無法久留在土壤中,很容易隨著雨水、灌溉水流到附近的湖泊與河流裡,最後流到海裡。

當海裡的氮與磷濃度上昇以後,造成藻類大量生長,形成藻華(algae bloom);藻華隔絕了水下植物的陽光,使得水下植物開始死亡;植物的死亡與分解吞噬了水中的氧氣,接著動物開始死亡...然後就是死亡海域。

由於慣行農法的單作、密植,使得化肥成為農業的必要之惡;所以死亡海域一直都是難以解決的問題。2008年的統計,全球的死亡海域共有405個點;而死亡海域的「熱區」集中在人煙稠密的北半球。

全球死亡海域熱區。圖片來源:wiki
而施放化肥加上灌溉,除了造成死亡海域之外,又會使得土壤酸化、鹽化。雖然哈伯法似乎在短時間內提高了農作物的產量,養活了許多人(這可以由1940年代開始,世界人口急速上昇看出來);

世界人口增長速度。圖片來源:wiki

但是,哈伯法所造成的副作用,包括死亡海域、土壤酸化、鹽化,以及因為人口大幅增長造成土地大量被開發的生態破壞等等...究竟是功是過呢?其實科學家發明了新技術,而這個新技術在大量被使用之後,產生了意想不到的變化,我想這也是當初哈伯始料未及的吧!

參考文獻:

Taiz and Zeiger, Plant Physiology, 5th ed.
Laurance Mee. 拯救死亡海域。2006。科學人。
Wikipedia. World populationDead zone.

留言

這個網誌中的熱門文章

為什麼「種豆南山下,草盛豆苗稀」?

陶淵明在「歸園田居」詩中,曾經提到「種豆南山下,草盛豆苗稀」。這首詩大家都很熟了,也是很受歡迎的國文教材,但是,有多少人認真去想為什麼「草盛豆苗稀」呢?難道只是因為陶淵明不會種田嗎?

雖然根據歷史的記載,「歸園田居」可能真的就是在他剛隱居的時候寫的(1);而在那時候,可能他的耕種技術也的確是還有待提升;不過筆者卻認為,從生物學的角度來看,「草盛豆苗稀」也不全是耕種技術的問題。

首先,我們來看一下氣候。陶淵明隱居的地點在潯陽柴桑,也就是現在的江西省九江市星子縣。當地是北緯29.44度,在北回歸線以北,屬於濕潤型亞熱帶氣候(2),1971-2000的年平均溫度為攝氏17.03度,每年四月就不再有攝氏零度以下的低溫(3)。雖然還是比臺灣偏北(台北市是北緯25.02度),大致上還是屬於溫和的氣候,植物的種類應該也不會相差太多。即使考慮近年來全球暖化的問題,應該也不會超過攝氏一度(4)。

在亞熱帶的台灣,夏天通常並不是植物茂盛生長的時期。為什麼呢?因為世界上90%的陸生植物是C3植物,這些植物在氣溫超過攝氏30度時,會因為光呼吸作用(photorespiration)造成水分的消耗大量上昇。C3植物(如大豆)在攝氏30度時,每抓一個二氧化碳分子就要消耗833個水(5),於是植物的生長速度就開始變慢。

不過,並不是所有的植物在夏天時生長速度都會變慢唷!有些植物,如玉米、甘蔗等,反而在夏天時長得特別好。為什麼呢?

原來玉米與甘蔗是所謂的C4植物,它們既耐熱又耐旱,跟C3植物比較起來,在攝氏30度時C4植物每抓一個二氧化碳的分子只消耗277個水(5),所以夏天的時候,它們的生長速度ㄧ點都不受影響呢!
說到這裡,讀者可能會想:什麼是C4植物?為什麼它們能夠既耐熱又耐旱呢?
所謂的C3、C4植物,指得是它們在光合作用上的不同。C3植物進行光合作用時,是由卡爾文循環(Calvin cycle)的酵素(RuBisCo,如圖二)直接抓取溶解在細胞中的二氧化碳,與核酮糖1,5-二磷酸(ribulose 1,5-bisphosphate,RuBP)進行反應;


而C4植物則在卡爾文循環上面,又增加了幾個步驟,而且這幾個步驟還跟卡爾文循環在不同的組織中進行呢(如圖三)!為什麼會這樣呢?


原來,C4植物多半都生活在亞熱帶或熱帶,在這些氣候區,植物進行光合作用時,會遇到一個大問題。

這個問題來自於卡爾文循環的第…

孔雀秋海棠的光合作用魔術

原產於馬來西亞雨林的孔雀秋海棠(Begonia pavonina),只有在光線極弱的狀況下葉片會出現藍色。當光線夠強的時候,葉片上的藍色就不會出現了。

因為這藍色是如此的美麗,使它得到了「孔雀秋海棠」(peacock begonia)的美名。大家搶著種它,想要看到那美麗的孔雀藍;但到底為什麼要出現這美麗的孔雀藍呢?

通常我們都認為,在葉片裡面除了葉綠素以外的光合色素,都是輔助色素:在光線不夠時,幫忙吸收更多光能;在光線太強時,把多餘的能量發散。所以孔雀秋海棠的孔雀藍,是否也是一種輔助色素呢?

之前的研究已經發現,這些孔雀藍,應該是來自於被稱為虹彩體(iridoplast)的一種色素體(plastid)。虹彩體位於葉片上表皮的細胞中,為葉綠體的變體。在最近的研究發現,這些虹彩體的類囊體(thylakoids)以一種不尋常的方式排列:每疊葉綠餅(grana)由三到四個類囊體組成,厚度約為40奈米;而一疊一疊的葉綠餅之間的距離約為100奈米。


一般的葉綠體,通常葉綠餅的排列是散亂的(如圖);孔雀秋海棠的虹彩體的葉綠餅卻排得如此整齊,有什麼作用呢?

研究團隊測量了20個虹彩體,發現它們的特殊構造賦予它們反射435~500奈米的光波的能力。這個波長正好就是藍光波段的最右邊,與綠光交界的位置。這就是為什麼孔雀秋海棠是藍色的原因吧!

不過,這些虹彩體不只是會反射藍光而已。研究團隊還發現,虹彩體讓孔雀秋海棠吸收較長波的綠光與紅光的能力提升了!這對孔雀秋海棠是非常重要的,因為它們通常在熱帶雨林的地面上生長。

在熱帶雨林裡,光線都被大樹給遮住了,使得地表的光線極弱。弱到怎樣的地步呢?大約是樹冠光線強度的百萬到千萬分之一喔!而且還不只是光線變弱而已,因為雨林中的大樹們把進行光合作用所需的兩個主要波段的光(460奈米與680奈米)都吸收得差不多了,在這樣的環境下,孔雀秋海棠如果不發展出吸收一點綠光的本事,還真的會混不下去。

事實上,因為這些特殊的構造,虹彩體比一般的葉綠體進行光合作用的效率更高。研究團隊藉著測量葉綠體的螢光(葉綠體進行光合作用時,一部份的葉綠素會把吸收的光以暗紅色的螢光發射出去;所以可以藉著測量螢光了解植物進行光合作用的效率)發現,虹彩體進行光合作用的效率,比一般的葉綠體都好。不過,當光線變強的時候,虹彩體的效率就沒有那麼好了;這或許就是為何,當我們把孔雀秋海棠種在光線…

【原來作物有故事】鳳梨 漂洋過海在臺灣發揚光大

作者:葉綠舒、王奕盛、梁丞志

在台灣提到鳳梨,一定會想到鳳梨酥這代表台灣的伴手禮。但是鳳梨其實不是台灣原產的水果喔!鳳梨原產於熱帶南美洲,在哥倫布1493年的第二次航行時於瓜德羅普的村莊中發現後引進歐洲,約於16世紀中葉傳入中國;台灣則是在1605年先由葡萄牙人引進澳門,再由閩粵傳入台灣,至今已有三百多年歷史。

在台灣,鳳梨因為台語諧音「旺來」很吉利而廣受大眾喜愛,但其實鳳梨的名字是根據它果實的型態來的,因為果實的前端有一叢綠色的葉片,讓以前的人覺得很像鳳尾,加上果肉的顏色像梨,所以就取名為「鳳梨」。至於英文的名稱也是因為果實的外型像毬果、而肉質香甜,所以就被取名為「松蘋果」(pineapple)啦!其實鳳梨果實的毬果狀的外觀主要是因為鳳梨是「聚合果」,每顆鳳梨是由200朵鳳梨花集合而成的!而它的學名Ananas則是來自於圖皮語,意思是很棒的水果。

在哥倫布把鳳梨引進歐洲以後,因為它的香甜好滋味讓它大受歡迎;但是身為熱帶水果的鳳梨,在溫帶的歐洲長得並不好!為了要讓王公貴族們吃到鳳梨,十六世紀的園丁們發明了「鳳梨暖爐」:把單顆鳳梨放在由馬糞堆肥做的暖床上的木製棚架,並升起爐火來保持溫暖,好讓鳳梨這熱帶植物可以在溫帶的歐洲開花結果;世界上第一個溫室就這樣誕生了,並由此開啟了歐洲建造溫室的熱潮!

鳳梨不只是改變了歐洲,在日本人到台灣後,嚐到了鳳梨的香甜滋味,便開始推動鳳梨產業。1903年,岡村庄太郎於鳳山設置岡村鳳梨工廠,生產鳳梨罐頭;後來逐漸形成中部以員林、南部以鳳山為中心的鳳梨生產體系。在1938年時,鳳梨罐頭工廠女工竟然佔了全台灣女性勞動人數三分之一以上呢!光復以後台灣的鳳梨產業也曾在1971年登上世界第一,讓台灣被稱為「鳳梨王國」。但是後來不敵其他國家的競爭,已經由外銷罐頭改為多以內銷鮮食鳳梨為主的型態了。

從清朝、日治時代直到現在,台灣的鳳梨品系一直都一樣嗎?當然不是囉!最早的鳳梨被稱為「在來種」,後來日治時代為了製作罐頭方便,從夏威夷引進了開英種;到了1980年以後,因為罐頭外銷敵不過競爭,台灣的鳳梨改為內銷且以鮮食為主,為了挽救鳳梨產業,農改場、農試所便培育出各種不同適合鮮食的鳳梨:包括不用削皮可以直接剝來吃的釋迦鳳梨(台農4號),最適合在秋冬生產的冬蜜鳳梨(台農13號),有特殊香氣的香水鳳梨(台農11號),以及因為果肉乳白色被稱為牛奶鳳梨的台農20號等…