跳到主要內容

淺談植物染色體工程

 

染色體。圖片來源:維基百科

提到改變植物的染色體,99.99999%的人都會想到農桿菌(Agrobacterium)吧?奇妙的是,這篇由Holger Puchta與Andreas Houben撰寫,標題為《植物染色體工程:過去、現在與未來》的文章詳細討論了植物染色體工程的歷史、現狀和未來的發展方向,但卻一點都沒有討論到農桿菌。我們就來看看吧!

植物染色體工程的早期發展可以追溯到20世紀80年代末至90年代初。這一時期,隨著分子生物學和遺傳工程技術的快速進步,科學家開始嘗試在植物中進行更複雜的基因操作,包括對染色體結構的改變。

1980年代末,隨著基因槍和農桿菌技術的發展,植物基因轉化變得可行。這些技術使得外來基因能夠被整合到植物的基因組中,為植物染色體工程奠定了基礎。

1990年代,隨著對植物基因組結構和功能更深入的理解,特別是對著絲點和端粒等關鍵染色體結構的認識,植物染色體工程開始朝著更加精細和目標導向的方向發展。在這一時期,科學家開始探索創建人工染色體和特定染色體區域的改造,例如利用著絲點特異性序列或組蛋白變體來改變染色體的行為。

植物微染色體工程

這是利用基因工程技術創建植物微染色體的方法,這些微染色體包含了必要的遺傳元素,如端粒、複製起始點和著絲點,但含有很少的其他遺傳信息。這些微染色體可用於植物生物技術中,將多個基因堆疊於一個獨立的遺傳載體。

微染色體(minichromosomes)是指在細胞核中存在的小型染色體,它們包含了一些基本的染色體結構,如端粒、複製起始點和著絲點,但與普通染色體相比,它們含有較少的遺傳信息。在植物染色體工程中,微染色體被視為有價值的工具,因為它們可以作為獨立的遺傳載體,用於攜帶和表達外源基因。

微染色體的主要優勢是:

1. 高度可控的基因表達:由於它們是獨立的遺傳單位,因此可以在不干擾植物原有遺傳結構的情況下,精確控制所攜帶基因的表達。

2. 多基因堆疊:微染色體能夠攜帶多個基因,這對於複雜的遺傳工程特別有用,如同時表達多個抗病基因或生物合成路徑中的多個酶。

3. 避免基因重組和位置效應:在植物的普通染色體上插入外源基因時,基因重組和位置效應可能影響基因的穩定性和表達(農桿菌有時就會發生這種事)。微染色體因為是獨立存在的,因此可以減少這些問題。

4. 應用於植物育種和基因治療:微染色體的這些特性使它們成為植物育種和基因治療的有力工具。

總而言之,微染色體在植物基因工程中提供了一種靈活且有效的方法,用於實現複雜的遺傳操縱,並有助於開發新的作物品種和治療策略。

但是,儘管微染色體在植物基因工程中具有明顯的優勢和潛力,但實際上它們目前還不是廣泛使用的技術,這主要是由於創建和操作微染色體需要高度專門的技術;相較於傳統的基因轉換技術,開發和利用微染色體的成本通常更高,且所需時間更長;微染色體在細胞分裂過程中的穩定性可能不如大的染色體;並非所有植物種都適合使用微染色體技術;法規的限制;公眾對基改作物的接受度等因素,造成目前使用這個技術的人並不多(說真的,筆者沒有看過任何文獻提到使用這個技術)。

植物著絲點的工程化

著絲點(centromere)是染色體分裂和遺傳物質傳遞過程中的重要結構,其功能與特有的組蛋白H3變體(CENH3)有關。

這項技術的核心是對著絲點(centromere)這一染色體結構的人工操控。

1. 科學家會設計一種CENH3融合蛋白。這種融合蛋白結合了CENH3和其他蛋白質或肽段,使其能夠特異性地結合到染色體的特定區域。

2. 接下來,這種融合蛋白被引導到植物染色體的特定位置。這通常是通過基因工程技術實現的,例如使用CRISPR/Cas系統來指導CENH3融合蛋白到目標位點。

3. 一旦CENH3融合蛋白定位到目標位置,它會促使該區域的染色體結構重新組織,形成一個功能性的著絲點。這樣,就在染色體的非原生著絲點位置創造了一個新的、人工的著絲點。

這項技術的關鍵在於精確地控制CENH3融合蛋白的表達和定位,以及確保新形成的著絲點具有正常的功能。通過這種方式,科學家可以在植物染色體上人工創建新的著絲點,這對於基因組編輯和染色體結構研究具有重要意義。

將感興趣的基因堆疊到工程化染色體上

將特定基因添加到工程化的微染色體上。這包括了使用特定的重組酶系統(如Cre/loxP系統)來實現基因的精確插入。

利用著絲點工程產生單倍體誘導體

通過改變著絲點的結構來產生單倍體植物。這對加速作物育種過程具有重要意義。單倍體植物只擁有一套染色體,與正常的二倍體植物(擁有兩套染色體)相比,它們在育種和基因研究中具有重要的應用價值。以下是這一過程的基本步驟:

首先,科學家會使用基因工程技術(如CRISPR/Cas9)來改變目標植物染色體上的著絲點結構。這通常涉及對著絲點關鍵蛋白(如CENH3)的基因序列進行特定的修改,從而影響著絲點的功能。

改變著絲點結構的植物細胞或組織將被用於雜交或其他育種技術。在雜交過程中,改造過的著絲點導致染色體分配不均,使得一些配子或細胞只含有一套染色體,形成單倍體。

接下來,科學家會篩選那些成功形成單倍體的植物細胞或組織,並將它們培育成完整的單倍體植株。

視需要,這些單倍體植株會進一步經過倍增處理,使它們恢復為正常的二倍體狀態。這樣做可以固定任何有益的基因突變或特性。

這種方法的優點在於它能夠加速傳統育種程序,特別是在培育具有特定遺傳特性的作物品種時。透過直接產生單倍體,可以迅速產生均質的品種,從而減少了育種過程中所需的時間和資源。此外,這一技術在基因功能研究和基因組編輯方面也有應用潛力。

透過CRISPR/Cas引導染色體倒位以改變有絲分裂重組

透過CRISPR/Cas造成染色體斷裂,在修補過程中導致基因的改變與染色體的重組。

隨著21世紀的到來,尤其是CRISPR/Cas等先進基因編輯技術的出現,植物染色體工程領域正在迅速發展,未來將對植物育種和基因工程帶來革命性的影響。

參考文獻:

New Phytologist (2024) 241: 541–552 doi: 10.1111/nph.19414

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N