跳到主要內容

氣候變遷,森林(forest)會發生什麼事?

 

圖片來源:維基百科

最近COP28剛剛簽完協議。令人欣慰的是,大家終於同意可以慢慢(有點太慢)讓化石燃料退場,但是大家大概也心照不宣:升溫1.5度C是跑不掉了。

我們即將面對一個更熱更無常的地球。

面對這樣的世界,究竟會發生什麼事呢?很重要的一件事是,對我們非常重要的森林,能不能繼續幫助我們?過去有許多研究發現,在森林將死亡的時候,它們不但不能固碳,可能還會釋放出更多的二氧化碳,造成氣候的變化更劇烈。這樣的狀況會不會發生呢?

最近有一群科學家探討氣候變化對森林生態系統的影響,特別是在不同水分和能量可用性下樹木的生長敏感性。研究團隊分析了超過660萬個樹木年輪,使用了一種稱為樹木年輪學(dendrochronology)的技術來研究樹木的生長。這項技術涉及分析樹木的年輪,以了解過去的氣候條件和環境因素如何影響樹木的生長。透過大量的數據收集和分析,他們能夠評估不同條件下樹木對環境變化的反應。這種方法使研究團隊能夠準確地追蹤和解釋過去數百年間樹木生長的歷史和趨勢。

研究團隊通過比較不同地區(濕潤和乾燥地區)樹木的年輪厚度,能夠識別出樹木生長對水分變化的敏感性。研究團隊發現,在濕潤地區生長的樹木在乾旱時期的生長受到更大的影響,相比之下,乾燥地區的樹木對乾旱有更好的適應性。這是因為濕潤地區的樹木較少經歷乾旱,因此對此更為敏感。

研究團隊使用了氣候水平衡方程式,用來描述和計算一個特定地區水分狀態。這些方程式考慮了降水、蒸發、植物蒸散和土壤水分等因素,從而提供了對該地區水文週期的整體理解。氣候水平衡方程式通常用於氣象學、水文學和生態學研究。

具體而言,氣候水平衡方程式通常包含以下元素:

降水(Precipitation):這是水分進入系統的主要方式,包括雨水和雪水。
蒸發(Evaporation):水分從地表和水體(如湖泊和河流)蒸發到大氣中。
蒸散(Transpiration):植物從土壤吸收水分並通過葉片釋放到大氣中的過程。
土壤水分(Soil Moisture):土壤中的水分含量,影響植物可用水量和地下水補給。
氣候水平衡方程式的核心是平衡這些不同的水分流動。例如,PET(Potential Evapotranspiration)是指在理想條件下(水分供應充足時)植物和土地表面可能失去的水分量。而CWD(Climatic Water Deficit)是指實際水分供應與PET之間的差距,反映了植物可能經歷的水分壓力。這些概念在研究氣候變化對生態系統的影響時非常重要。

研究團隊發現生長在其範圍較濕潤部分的樹木對乾旱最敏感。

研究團隊還預測了2100年前樹木生長情況。他們預測到2100年,全球樹木生長總體將下降10.4%(變化範圍從-37.3%到+0.7%)。更多的森林預計將經歷生長下降。具體來說,51.2%的網格單元(代表特定物種和地點的組合)預計將經歷顯著的生長下降(超過95%的蒙特卡洛模擬迭代)。相比之下,只有0.6%的網格單元預計將經歷顯著的生長增加。這些結果突顯了一個更熱、更乾燥的地球將可能導致全球森林健康狀況的重大變化,以及它們固碳能力的影響。這些關於樹木年輪寬度指數(RWI)變化的預測表明,氣候變化可能會對生長在較濕潤、較溫暖地區的樹木產生出人意料的強烈和負面影響,而物種在其乾旱範圍邊緣的較涼部分可能出人意料地對氣候變化表現出較強的抵抗力。

聽起來不太妙?的確是。研究團隊當然也提出的一些應對建議。這些建議主要集中在森林保護和管理陸地碳匯的政策層面。他們建議政策制定者在保護森林免受氣候變化影響時,應該擴大保護干預的焦點,不僅僅關注物種在其乾旱範圍邊緣的部分。此外,來自乾燥地區的樹木對乾旱的適應性可能對於管理干預措施有用,包括協助這些樹木遷移到較濕潤的地區。

研究還指出,雖然動態全球植被模型日益精密,但很少有模型考慮到碳捕獲的氣候敏感性在空間上的變異。沒有考慮到乾旱敏感效應可能導致人們過高估計濕潤地區碳匯的韌性。因此,改進對於森林保護和管理陸地碳匯的策略將是應對氣候變化對樹木生長影響的關鍵。

參考文獻:

Robert Heilmayr et al. ,Drought sensitivity in mesic forests heightens their vulnerability to climate change.Science382,1171-1177(2023).DOI:10.1126/science.adi1071

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

光合作用的循環電子傳遞(cyclic electron flow)的調節

  圖片來源:維基百科 光合作用(photosynthesis)分為光反應(light reaction)與碳反應(Calvin-Benson cycle)。其中光反應為將陽光的光能轉換為化學能(ATP)與電子(NADPH)的過程。光能由光系統I或光系統II接收並轉換為電子進行傳遞,傳遞的過程中部分的能量被細胞色素b6f複合體(cytochrome b6f complex)擷取,提供植物將氫離子(H + ,proton)由葉綠體的基質(stroma)運輸到類囊體腔(thylakoid lumen)中,製造氫離子梯度(proton gradient),以提供ATP合成酶(ATP synthase)用來合成ATP;電子本身最後被傳送給NADP,產生NADPH用來在碳反應中做為還原電子使用。 上述的過程(稱為線性電子傳遞linear electron flow)並非光反應唯一會進行的反應。除了線性電子傳遞,植物也會進行所謂的循環電子傳遞(cyclic electron flow):電子在由光系統II→細胞色素b6f複合體 →光系統I之後,不將電子運送給Fd-NADP + 還原酶來產生NADPH,而是將電子送給一個Fd-PQ還原酶。由於接著Fd-PQ還原酶會把電子交還給細胞色素b6f複合體,所以被稱為循環電子傳遞。 循環電子傳遞到底有什麼樣的功能,目前還沒有定論。有些科學家認為植物用它來調節能量(ATP)與電子(NADPH)的產生比率,也有些科學家認為循環電子傳遞有保護植物免於被過量光能傷害的功能。不管怎麼說,近年來的研究卻發現了幾個基因與循環電子傳遞的調節有關。 第一個被發現的基因是 PGR5 (PGR=protein gradient)。缺少 PGR5 的阿拉伯芥無法形成氫離子梯度,也就是說 PGR5 為光反應所必須。但是 PGR5 長得一點都不像電子運輸蛋白,這就引起了科學家們的興趣。 後續的研究發現了另一個基因稱為 PGRL1 (PGR5-like 1)。研究團隊發現,缺少 PGRL1 會造成 PGR5 不穩定,但缺少 PGR5 並不會影響 PGRL1 的穩定性。 最近又發現了另一個基因 PGRL2 。研究團隊發現,缺少 PGRL2 對光合作用沒有影響,但是在植物中過量表現 PGRL2 會使 PGR5 的穩定性下降。同時缺少 PGRL2 與 PGRL1 的植...

吃太多光果甘草(liquorice)會有不良作用

  光果甘草。圖片來源: 維基百科 。 光果甘草(liquorice, Glycyrrhiza glabra )又稱為洋甘草,為豆科甘草屬下的一個種,在中國、西亞與南歐都有分布。一般人們會取它的根來製作糖果,在歐美蠻受歡迎的。英文名稱liqurice來自於希臘文的 glycyrrhiza ,意思就是「甜的根」:「 glukus 」意為「甜」,「 rhiza 」意為「根」。它也是中藥甘草的一種,乾燥的根及根莖性味偏涼,加工(蜜炙)後則性味偏溫,各有不同功效。 光果甘草除了可以用來製作糖果,也用於傳統醫學與草藥學。但是光果甘草含有甘草酸(Glycyrrhizin 或 glycyrrhizic acid),如每日每公斤體重服用超過2毫克(2 mg/kg/day)可導致低血鉀、血壓上升、肌肉無力等症狀。 最近發表在《新英格蘭醫學雜誌》上的 一篇文章 提到,一位54歲的建築工人,因為每天吃一包半的光果甘草糖,連吃了幾個星期,結果死於突發的心臟驟停(cardiac arrest)。 醫師認為他的死亡與甘草酸有關。甘草酸是一種皂素(saponin),屬於植物的次級代謝物,由一分子的甘草次酸(glycyrrhetinic acid)與兩分子的葡萄糖醛酸(Glucuronic acid)組成。 甘草糖。圖片來源: 維基百科 。 雖然醫師認為他的死亡與食用大量的甘草糖脫不了關係,但醫師也注意到死者的飲食並不健康。他一向吃很多糖,只是最近幾週改吃甘草糖。 光果甘草與中藥的甘草( G. uralensis )是近親,兩者同屬不同種。中藥的甘草也含有甘草酸,幸好華人文化裡並沒有把甘草做成糖果的習慣,所以應該不會發生甘草酸中毒的情形。 補充:2020/10/10發現了一個影片,裡面提到這個病例以及甘草酸致死的機轉:因為甘草酸的結構跟皮質醇(cortisol)很像,所以會引發類似的效應。 影片裡面提到,現在在美國要買到真的liquorice其實並不容易,大部分都是人工甘味...所以這位仁兄真的很厲害可以買到真的liquorice。 2022/04/07:最近有一篇研究報告提到,甘草酸與甘草次酸有抗癌的活性,而且還能抑制SARS-CoV2的複製。看起來很有趣,但考慮到甘草酸與甘草次酸的毒性,似乎還是要小心使用比較好。 參考文獻: Case 30-2020: A 54-Year-Old ...