跳到主要內容

雜草以「人海戰術」來對抗年年春(glyphosate)

在美國,由於使用抗殺草劑(年年春)的作物,加上免耕耕作法(no-till farming),農民年復一年地使用年年春,造成對殺草劑產生抗性的雜草越來越多。在2013年,有七千萬英畝的農田被抗殺草劑的雜草入侵(詳見「美國中西部抗藥性雜草大爆發」),使得專家們建議農民們可能要開始考慮回到深耕了。

最近,堪薩斯州立大學(Kansas State University)的研究團隊,使用了螢光原位標示技術(fluorescent in situ hybridization,FISH),發現了包括地膚(kochia,Kochia scoparia)、帕爾默莧菜(Palmer amaranth,Amaranthus palmeri)以及莧屬植物(common waterhemp,Amaranth rudis)對於年年春的抗性機制。

地膚。圖片來源:"Kochia aka Fire bush 7128" by Rameshng - Own work.
Licensed under CC BY-SA 3.0 via Wikimedia Commons.
原來,年年春之所以能成為全效性的殺草劑,是因為它抑制了EPSPS(5-Enolpyruvylshikimate-3-Phosphate Synthase)這個酵素。EPSPS將莽草酸-3-磷酸(shikimate-3-phosphate)與磷酸烯醇丙酮酸(phosphoenolpyruvate,PEP)加在一起,產生5-烯醇丙酮莽草酸-3-磷酸(5-enolpyruvylshikimate-3-phosphate,EPSP)。

EPSPS酵素參與的反應。圖片來源:"EPSPreactionII" by Boghog - Own work.
Licensed under CC BY-SA 3.0 via Wikimedia Commons.
EPSP往下繼續合成酪氨酸(tyrosine)、苯丙氨酸(phenylalanine)與色氨酸(tryptophan),由於植物是自營生物,不能如動物由食物中取得氨基酸,因此,當EPSPS被年年春抑制時,植物便因為無法合成這三個氨基酸而死亡。

對於年年春有抗性的基改作物,是因為轉入了農桿菌(Agrobacterium tumefaciens)的EPSPS。因為農桿菌的EPSPS對年年春有抗性,當帶有農桿菌EPSPS的農作物接觸到年年春時,便可以存活下來。

當初使用這個機制時,曾有人憂心農桿菌的EPSPS會經由基改作物的花粉,傳播到這些農作物的野生種中,產生所謂的超級雜草;但是當超級雜草真的產生時,卻不是出現在這些農作物的野生種中,而是出現在帕爾默莧菜、地膚、以及其他的莧屬雜草中。究竟他們是如何對年年春產生抗性的呢?

堪薩斯州立大學的研究發現,原來這些雜草將它們的EPSPS重複了好多次。多少次呢?研究團隊發現,當雜草中帶有九到十二份的EPSPS時,便可以抵抗一般農田中使用劑量的兩倍;而當雜草中帶有十六份EPSPS時,即使年年春的劑量加到六倍,都對它無可奈何了。

只能說,種子植物原本就會有產生多倍體的傾向(詳見「整園甘蔗同一株」),而當天擇或人擇的壓力,會使得多倍體的生存有利時,當然多倍體就會螽斯衍慶,生生不息囉!原本產生特別多EPSPS是不必要的,當人們持續使用年年春時,產生特別多的EPSPS的雜草,便因為體內有那麼多的EPSPS,可以用人海戰術來打敗年年春。不要忘了,酵素跟他的抑制劑之間,本來就存在著劑量平衡的問題;再強的抑制劑,如果酵素用人海戰術去拼的話,也是可以突破防線的,而這三種雜草,就是成功地運用了人海戰術,來打敗年年春。恐怕再用下去,就真的會「種豆南山下,草盛豆苗稀」,接著大概還要「晨興理荒穢,帶月荷鋤歸」才有辦法打贏了!

參考文獻:

2015/2/19. Invasive weed Kochia's resistance to well-known herbicide stems from increase in gene copies. Science Daily.

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N