跳到主要內容

雜草以「人海戰術」來對抗年年春(glyphosate)

在美國,由於使用抗殺草劑(年年春)的作物,加上免耕耕作法(no-till farming),農民年復一年地使用年年春,造成對殺草劑產生抗性的雜草越來越多。在2013年,有七千萬英畝的農田被抗殺草劑的雜草入侵(詳見「美國中西部抗藥性雜草大爆發」),使得專家們建議農民們可能要開始考慮回到深耕了。

最近,堪薩斯州立大學(Kansas State University)的研究團隊,使用了螢光原位標示技術(fluorescent in situ hybridization,FISH),發現了包括地膚(kochia,Kochia scoparia)、帕爾默莧菜(Palmer amaranth,Amaranthus palmeri)以及莧屬植物(common waterhemp,Amaranth rudis)對於年年春的抗性機制。

地膚。圖片來源:"Kochia aka Fire bush 7128" by Rameshng - Own work.
Licensed under CC BY-SA 3.0 via Wikimedia Commons.
原來,年年春之所以能成為全效性的殺草劑,是因為它抑制了EPSPS(5-Enolpyruvylshikimate-3-Phosphate Synthase)這個酵素。EPSPS將莽草酸-3-磷酸(shikimate-3-phosphate)與磷酸烯醇丙酮酸(phosphoenolpyruvate,PEP)加在一起,產生5-烯醇丙酮莽草酸-3-磷酸(5-enolpyruvylshikimate-3-phosphate,EPSP)。

EPSPS酵素參與的反應。圖片來源:"EPSPreactionII" by Boghog - Own work.
Licensed under CC BY-SA 3.0 via Wikimedia Commons.
EPSP往下繼續合成酪氨酸(tyrosine)、苯丙氨酸(phenylalanine)與色氨酸(tryptophan),由於植物是自營生物,不能如動物由食物中取得氨基酸,因此,當EPSPS被年年春抑制時,植物便因為無法合成這三個氨基酸而死亡。

對於年年春有抗性的基改作物,是因為轉入了農桿菌(Agrobacterium tumefaciens)的EPSPS。因為農桿菌的EPSPS對年年春有抗性,當帶有農桿菌EPSPS的農作物接觸到年年春時,便可以存活下來。

當初使用這個機制時,曾有人憂心農桿菌的EPSPS會經由基改作物的花粉,傳播到這些農作物的野生種中,產生所謂的超級雜草;但是當超級雜草真的產生時,卻不是出現在這些農作物的野生種中,而是出現在帕爾默莧菜、地膚、以及其他的莧屬雜草中。究竟他們是如何對年年春產生抗性的呢?

堪薩斯州立大學的研究發現,原來這些雜草將它們的EPSPS重複了好多次。多少次呢?研究團隊發現,當雜草中帶有九到十二份的EPSPS時,便可以抵抗一般農田中使用劑量的兩倍;而當雜草中帶有十六份EPSPS時,即使年年春的劑量加到六倍,都對它無可奈何了。

只能說,種子植物原本就會有產生多倍體的傾向(詳見「整園甘蔗同一株」),而當天擇或人擇的壓力,會使得多倍體的生存有利時,當然多倍體就會螽斯衍慶,生生不息囉!原本產生特別多EPSPS是不必要的,當人們持續使用年年春時,產生特別多的EPSPS的雜草,便因為體內有那麼多的EPSPS,可以用人海戰術來打敗年年春。不要忘了,酵素跟他的抑制劑之間,本來就存在著劑量平衡的問題;再強的抑制劑,如果酵素用人海戰術去拼的話,也是可以突破防線的,而這三種雜草,就是成功地運用了人海戰術,來打敗年年春。恐怕再用下去,就真的會「種豆南山下,草盛豆苗稀」,接著大概還要「晨興理荒穢,帶月荷鋤歸」才有辦法打贏了!

參考文獻:

2015/2/19. Invasive weed Kochia's resistance to well-known herbicide stems from increase in gene copies. Science Daily.

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

蠔菇(Pleurotus ostreatus)如何打獵?

  圖片來源:維基百科 過去我們介紹過蠔菇( Pleurotus ostreatus )這種真菌其實會打獵。靠著捕捉土壤與腐木中的線蟲,蠔菇得以享受它的大餐。 最近中央研究院的研究團隊發現,蠔菇打獵的方法是利用一種「神經毒氣」來殺死線蟲。 這種神經毒氣是3-辛酮(3-octanone)。當線蟲接觸到3-辛酮,會造成大量的鈣離子流入神經與肌肉細胞,造成線蟲癱瘓;然後蠔菇就會把菌絲長進線蟲體內,吸取線蟲的養分。 蠔菇的哪裡有3-辛酮呢?研究團隊發現,蠔菇的菌絲會長出小泡泡(研究團隊稱為lollipop),這小泡泡裡面含有3-辛酮。當線蟲碰到這些小泡泡的時候,小泡泡就會破裂,釋放出神經毒氣。研究團隊發現無法長出小泡泡的突變體,對線蟲就沒有危害。 雖然菌絲會分泌神經毒氣,但蠔菇的子實體是無毒的,可以安心食用;但關於蠔菇的這個發現,其實已經在素食群體中引起討論:到底蠔菇是不是素的? 參考文獻: Science Advances, DOI: 10.1126/sciadv.ade4809

製作尿素(urea)的新方法

尿素。圖片來源: 維基百科 尿素是很重要的氮肥。全世界產生的氨(ammonia)有八成用來合成尿素,而用來合成氨的哈伯法(the Haber-Bosch process)需要在攝氏五百度下加壓(20 MPa)。 傳統合成尿素的方法是用氨與二氧化碳在攝氏兩百度下加熱。若與哈伯法一起計算,每年全世界為了合成尿素要消耗掉百分之二的能源,過程中還釋放了大量的溫室氣體。 最近中國湖南大學的研究團隊開發了一個新的方法,可以在室溫常壓下,在水裡以氮氣與二氧化碳直接合成尿素。 反應在流動反應器池中進行,池中包含由載有催化劑的碳紙製成的陰極和鎳基陽極。電極由膜隔開,位於裝有碳酸氫鉀水溶液的腔室內。研究人員將氮氣和二氧化碳送通過電池,以使兩種氣體均吸附在催化劑上並反應生成尿素。催化劑則是由二氧化鈦奈米片上的鈀-銅奈米粒子組成。 在催化劑表面,氮氣促進了二氧化碳的還原,生成一氧化碳。然後,一氧化碳與氮氣反應生成一些中間物種。一氧化碳與這些中間體之間的進一步相互作用使氮氣氫化並形成碳-氮鍵,從而產生尿素。 該系統的效率(可衡量生產尿素的電力份額)約為9%。雖然該反應的效率和生產率仍然很低,要使其實用化還有很長的路要走,但是這還是提供了小規模生產尿素的可能性,可以讓更多國家有能力生產它。 尿素在1824年第一次由德國化學家弗里德里希·維勒(Friedrich Wöhler,1800-1882)以氰酸中加入氨水後蒸乾合成出來。當時他並不知道這個化合物是什麼,直到1828年證明了這些白色晶體就是尿素。尿素的人工合成打破了當時人們的一個迷思:有機化合物不能以人工合成。這個反應被認為開啟了有機化學這個領域。 參考文獻: Nat. Chem. 2020, DOI: 10.1038/s41557-020-0481-9