跳到主要內容

抗蟲作物的末日即將來臨?

若您聽過「基改作物」這個名詞,事實上不管它們被稱為轉基因作物(transgenic organisms),或是基改作物(genetically modified organisms,GMO),目前的基改作物,最大宗的大致上可以分為兩種:

1. 抗殺草劑:這部分目前在市面上主要是抗年年春(嘉磷塞,glyphosate)。
2. 抗蟲:這部分目前在市面上主要為帶有蘇力菌(Bacillus thuringiensis)的結晶蛋白(δ-endotoxin,俗稱Bt toxin)。

目前抗殺草劑的作物,由於雜草已經逐漸演化出對年年春的抗性,已漸漸失去神效;至於抗蟲作物呢?

首先我們來回顧一下抗蟲作物的歷史。蘇力菌最早用於有機農業,以噴灑孢子的方式來殺滅鱗翅目(Lepidoptera,如蝴蝶、蛾等)害蟲。抗蟲作物在1996年第一次上市,當時的作物僅含有單一結晶蛋白;但為了預防極可能發生(也真的發生了)的抗性,研究團隊開始發展含有多個結晶蛋白的抗蟲作物(pyramided Bt crops,以下略稱為多重抗蟲作物),並於2002年上市。

在這六年間,難道沒有抗Bt害蟲出現嗎?答案是:有的。事實上,在1985年便已經發現對Bt產生抗性的印度谷螟(Plodia interpunctella)。因此,在抗蟲作物上市後,各國都要求種植抗蟲作物的農民必需設置隔離區(refuge)。隔離區是什麼呢?就是在種植抗蟲作物的田地旁邊,種植不帶有抗蟲基因的農作物。這些農作物提供害蟲生長繁殖的地區,當抗性害蟲出現時,由於基因突變通常頻率不高,因此在有隔離區的狀況下,抗性害蟲為少數,於是抗性害蟲有較高的機率與不具抗性的害蟲交配。在抗性基因為隱性突變的前提下,當抗性害蟲與不具抗性的害蟲交配後,所生出的子代便不具有抗性,當他們食用了抗蟲作物後,便會死亡。

印度谷螟。圖片來源:wiki
但是,隔離區要奏效,必需要有許多因素配合。首先,隔離區要夠大(至少要佔農地的20%),如果不夠大、或是農民在隔離區噴灑農藥殺死害蟲,那麼隔離區就沒有用了。接著,基因突變的頻率要夠低,而且突變基因要是隱性。如果是顯性、或是突變的頻率偏高,那麼隔離區必需要擴大到至少為種植抗蟲作物的一半面積,才有可能延遲抗性害蟲的出現20年(這裡說的不是不會出現喔!)。再來是,不論在作物的哪一個階段,抗蟲作物裡面的結晶蛋白要能夠殺死幾乎全部的害蟲;也就是說,作物內的抗蟲蛋白不僅要有效,而且濃度要穩定。最後,如果抗性突變使害蟲在不含有抗蟲基因的作物上的競爭力減弱,這也可以使抗性害蟲晚些出現。

但是,目前已經知道,當作物開始開花結果的時期,抗蟲蛋白的濃度會降低。這時候就代表原先設計的隔離區要擴大了!可是隔離區越大,代表收益越差;因為隔離區就是要用來養蟲,所以在隔離區能收穫的農作物一定不多、賣相也差。

所以,農民們無不企盼著多重抗蟲作物的上市,能解決這些問題。不過,真的解決了嗎?

答案是,在一些條件能配合的狀況下,多重抗蟲作物可以有較小(注意:不是沒有)的隔離區。

什麼條件呢?首先,隔離區當然還是不能噴農藥;接著,害蟲對於不同的結晶蛋白間,不存在著交叉作用(cross-reactivity)。最後,最好是所有的農田一次全部換成多重抗蟲作物。當然,基因突變率、突變基因為隱性或顯性、抗蟲蛋白的濃度的穩定性還是都要列入考慮的。

那麼,從2002年到現在,有新的抗性害蟲出現了嗎?

答案是:有,而且很多。將2005年與2010年相比,有五個區域(包括了南美洲、美國與印度)都出現了超過一半的害蟲出現抗性,這使得抗蟲玉米的功效變差了(下圖紅色部分)。而在2005年時,只有棉鈴蟲(Helicoverpa zea)出現抗性,但是在2010年時,除了棉鈴蟲以外,玉米秸稈螟(Busseola fusca)、西方玉米根蟲(Diabrotica virgifera virgifera)、斜紋夜蛾(Spodoptera frugiperda)、棉紅鈴蟲(Pectinophora gossypiella)都出現了抗性;而結晶蛋白依然有效的區域(下圖綠色部分),已由2005年的絕大多數,退到不到三分之一了。

2005與2010年抗性害蟲出現情形。圖片來源:Nature Biotechnology
為什麼會這樣呢?簡單來說,人性。在多重抗蟲作物上市前的田間研究顯示,如果多重抗蟲作物與只含單一抗蟲基因的作物一起種植,產生抗性害蟲的機率會提高;於是建議一次要把所有的基改作物都換成多重抗蟲作物。但是,美國就是做不到,硬就是拖了八年才換完。所以,超過一半的害蟲出現了抗性的五個地區,美國就佔了三個。相對的,澳洲當年就是一次到位,全部換完,所以目前這些害蟲在澳洲依然對抗蟲玉米無奈何。

當然,這個調查也發現,許多地區的害蟲突變率,比原先設想中的要高。這麼一來,當初建立的電腦模型就要重來,當然隔離區也要擴大。

不過,也不全部都是壞消息。在另一個大型研究發現,最常見的突變發生在結晶蛋白的第二個區位(domain II)。結晶蛋白共有三個區位,其中第二與第三區位對結晶蛋白是否能與昆蟲的中腸細胞結合很重要。在第二區位發生突變,會使結晶蛋白無法與中腸結合,於是便失去效用。過去只知道第二區位很重要,但是在這個大型研究中發現,第三區位也有其重要性。因此,未來在設計新的結晶蛋白時,多留意第二與第三區位的相似性;不要把這兩個區位相似的結晶蛋白基因同時轉入作物,可以設計出較有效果的多重抗蟲作物。

聽來似乎抗蟲作物尚大有可為?不過,永遠都不要高估了人性。雖然澳洲模式告訴我們,只要所有的農民們一起合作,要讓抗蟲作物的抗蟲效果存續較長的時間,並非不可能;但研究團隊也發現,即使是相似度很低的結晶蛋白,交叉作用依然無法完全避免。而人性永遠都是難以預估的;筆者深深覺得,基改作物要能夠永遠在地球上睥睨群「蟲」,是不可能的事,或許更應該思考的事是:如何建立對大自然友善的生存模式吧?

最近義美的高總經理出面反對政府提倡基改作物,或許筆者漏看新聞,沒有看到政府提倡基改作物的消息;如此消息為真,筆者也非常的憂慮。為什麼呢?因為政府光是協調農民不要過度栽種高麗菜、柳丁等農作物都辦不到,如何能夠讓農民乖乖的在基改作物的旁邊設置隔離區?唉!

參考文獻:

2015/2/8。中央社。義美:政院領軍攻基改作物 禍害農地

Bruce E. Tabashnik, Thierry Brevault & Yves Carriere. 2013. Insect resistance to Bt crops: lessons from the first billion acres. Nature Biotechnology. 31(6):510-521 doi:10.1038/nbt.2597

Yves Carriere, Neil Crickmore & Bruce E. Tabashnik. 2015. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nature Biotechnology.33, 161–168 doi:10.1038/nbt.3099

McGaughey WH. 1985. Insect Resistance to the Biological Insecticide Bacillus thuringiensis. Science. 229(4709):193-5.

留言

張貼留言

這個網誌中的熱門文章

為什麼「種豆南山下,草盛豆苗稀」?

陶淵明在「歸園田居」詩中,曾經提到「種豆南山下,草盛豆苗稀」。這首詩大家都很熟了,也是很受歡迎的國文教材,但是,有多少人認真去想為什麼「草盛豆苗稀」呢?難道只是因為陶淵明不會種田嗎?

雖然根據歷史的記載,「歸園田居」可能真的就是在他剛隱居的時候寫的(1);而在那時候,可能他的耕種技術也的確是還有待提升;不過筆者卻認為,從生物學的角度來看,「草盛豆苗稀」也不全是耕種技術的問題。

首先,我們來看一下氣候。陶淵明隱居的地點在潯陽柴桑,也就是現在的江西省九江市星子縣。當地是北緯29.44度,在北回歸線以北,屬於濕潤型亞熱帶氣候(2),1971-2000的年平均溫度為攝氏17.03度,每年四月就不再有攝氏零度以下的低溫(3)。雖然還是比臺灣偏北(台北市是北緯25.02度),大致上還是屬於溫和的氣候,植物的種類應該也不會相差太多。即使考慮近年來全球暖化的問題,應該也不會超過攝氏一度(4)。

在亞熱帶的台灣,夏天通常並不是植物茂盛生長的時期。為什麼呢?因為世界上90%的陸生植物是C3植物,這些植物在氣溫超過攝氏30度時,會因為光呼吸作用(photorespiration)造成水分的消耗大量上昇。C3植物(如大豆)在攝氏30度時,每抓一個二氧化碳分子就要消耗833個水(5),於是植物的生長速度就開始變慢。

不過,並不是所有的植物在夏天時生長速度都會變慢唷!有些植物,如玉米、甘蔗等,反而在夏天時長得特別好。為什麼呢?

原來玉米與甘蔗是所謂的C4植物,它們既耐熱又耐旱,跟C3植物比較起來,在攝氏30度時C4植物每抓一個二氧化碳的分子只消耗277個水(5),所以夏天的時候,它們的生長速度ㄧ點都不受影響呢!
說到這裡,讀者可能會想:什麼是C4植物?為什麼它們能夠既耐熱又耐旱呢?
所謂的C3、C4植物,指得是它們在光合作用上的不同。C3植物進行光合作用時,是由卡爾文循環(Calvin cycle)的酵素(RuBisCo,如圖二)直接抓取溶解在細胞中的二氧化碳,與核酮糖1,5-二磷酸(ribulose 1,5-bisphosphate,RuBP)進行反應;


而C4植物則在卡爾文循環上面,又增加了幾個步驟,而且這幾個步驟還跟卡爾文循環在不同的組織中進行呢(如圖三)!為什麼會這樣呢?


原來,C4植物多半都生活在亞熱帶或熱帶,在這些氣候區,植物進行光合作用時,會遇到一個大問題。

這個問題來自於卡爾文循環的第…

【原來作物有故事】麵包樹 熱帶果實引發電影傳奇

第一次聽到麵包樹的名字,是在小學的校園裡。當時老師說麵包樹雖然果實真的長得像麵包,但因為台北太冷了,原生於熱帶的它沒辦法在台北開花結果。

後來在花蓮當老師時,發現學校餐廳夏天有時會出現一種特別的蔬菜湯:裡面有黃色果肉、白色種子的「菜」。在地的同事告訴我,那叫做「巴吉魯」,也就是麵包樹的果實。

花蓮的夏天總是不缺「巴吉魯」,不只市場裡有賣、有些人家的院子裡就有麵包樹。在地的朋友說,成熟的果實削皮切塊加點小魚乾煮湯很好喝,長不大的果實(雄花花序)用來燃燒驅蚊,據說比蚊香還有效。

麵包樹是桑科波羅密屬的多年生大型喬木,花為單性花,雌雄同株;果實是由30-68朵雌花所形成的多花果。麵包果通常在採收後五天到一週內食用最好吃,如果冷藏可以保存二到三週。

目前的研究認為麵包樹源自大洋洲新幾內亞、馬來半島、與西密克羅尼西亞。台灣的麵包樹原生於蘭嶼。在蘭嶼,麵包樹稱為“chipogo”,達悟族人用於製作船首、船尾板、坐墊,及住屋用的宗柱、主屋之踏腳板與木笠、木盤等用具,而分泌的乳白色汁液具黏性,可以當作粘接劑。

達悟族較少食用麵包果,倒是台灣東部的阿美族與太魯閣族經常拿麵包果來吃;不過太平洋群島上最常見的吃法應該是將麵包果放在鋪了葉片的坑洞內發酵成可以放二、三年的「果醬」。由於太平洋群島夏季常有颱風,這些「果醬」對各地原住民們是颱風後很重要的緊急糧食。既然麵包樹這麼重要,「南島語族」(包括台灣的原住民)不論坐船到哪裡,總是帶著麵包樹的種子。所以,麵包樹在太平洋各群島上是常見的風景。

第一個看到麵包樹的歐洲人應該是十六世紀末到十七世紀初的葡萄牙航海家佩得羅‧費爾南德斯‧德‧基羅斯。比他晚將近一百年的英國航海家威廉‧丹皮爾船長,他提到麵包樹的果實可以烤來吃。

到了十八世紀,麵包樹突然搖身一變成了「神奇糧食」。到底發生了什麼事呢?原來在1769年與庫克船長乘「奮進號」的英國植物學家班克斯爵士在大溪地看到了麵包樹,因為麵包樹的果實約有四分之一為澱粉、在熱帶地區又長得很好,使班克斯認為麵包樹可能是解決英國在牙買加殖民地奴隸營養問題的解答。於是在1787年,英國皇家科學院派遣邦迪號前往大溪地收集麵包樹帶到加勒比海群島種植。為了這個目的,船上還有一位隨船的植物學家大衛‧尼爾森。

原訂於8月16日出發的邦迪號,因為一連串的延遲,最後終於到了大溪地、收集了足夠數量的麵包樹以後,卻在因為船長布萊一路…

通風報信的植物

植物受傷時會有什麼反應?過去的研究讓我們瞭解,當植物被攻擊(受到病原菌感染、受傷)時,會釋放出揮發性有機物質(VOCs,Volatile Organic Compounds),讓自己以及附近的植物啟動防禦機制。這個作用有點像古代的烽火臺,當敵人來襲就燒起狼煙,附近的人看到狼煙就知道這裡出事了,要加強戒備。

不過,當附近的植物感應到VOCs時,它們會如何加強自己的防禦機制呢?過去的實驗發現,當植物的地上部位受到病原菌感染時,會傳遞信號給自己的根,接著根部的鋁活化蘋果酸運輸蛋白(ALMT1,aluminum-activated malate transporter)便會活化後釋放蘋果酸(malate)到土壤中來召喚枯草桿菌 UD1022(Bacillus subtilis UD1022)這隻植物的益菌。這些現象是否不僅僅發生在苦主、也發生在附近的植物身上呢?

康納(Connor Sweeney)和他在德拉瓦大學的指導教授,最近發現:不只是受傷的植物本身會進行這些防禦機制、附近的植物也會呢!

康納是德拉瓦州(Delaware)的高中生。他因為對科學有興趣,寫了e-mail給德拉瓦大學(University of Delaware)的白斯教授(Harsh Bais),表達希望能進他的實驗室學習。當白斯老師回信說「OK」的時候,康納高興得不得了。

於是他就開始了他的實驗室生活:下課後、週末以及暑假,康納都在白斯老師的實驗室裡種阿拉伯芥(Arabidopsis thaliana)。雖然他也是高中的游泳校隊,但他盡可能地投入時間作實驗。

成果是豐碩的。兩年後,康納在白斯教授的指導下,解出了植物接到鄰居的「狼煙」以後,接下來做了什麼;他們的成果發表在2017年的「植物科學前鋒」(Frontier in Plant Science)期刊上。

以一個高中生來說,這可是個非同小可的成就;康納不只是付出了許多努力,他也細心觀察每一個實驗。因為他夠細心,所以才沒有錯失了重要的發現。

這個重要的發現是什麼呢?有一天他如常地進行實驗:把一株阿拉伯芥用鑷子弄了幾個傷口,準備明天觀察它的反應。不同的是,這次旁邊有一株阿拉伯芥沒有被他弄傷。

第二天他看到了令他不敢相信的結果:旁邊的阿拉伯芥的主根變長、而且還長出了不少側根。

於是他們做了更多測試。他們發現:旁邊有受傷的伙伴的小芥們,主根生長的速度大約…