跳到主要內容

抗蟲作物的末日即將來臨?

若您聽過「基改作物」這個名詞,事實上不管它們被稱為轉基因作物(transgenic organisms),或是基改作物(genetically modified organisms,GMO),目前的基改作物,最大宗的大致上可以分為兩種:

1. 抗殺草劑:這部分目前在市面上主要是抗年年春(嘉磷塞,glyphosate)。
2. 抗蟲:這部分目前在市面上主要為帶有蘇力菌(Bacillus thuringiensis)的結晶蛋白(δ-endotoxin,俗稱Bt toxin)。

目前抗殺草劑的作物,由於雜草已經逐漸演化出對年年春的抗性,已漸漸失去神效;至於抗蟲作物呢?

首先我們來回顧一下抗蟲作物的歷史。蘇力菌最早用於有機農業,以噴灑孢子的方式來殺滅鱗翅目(Lepidoptera,如蝴蝶、蛾等)害蟲。抗蟲作物在1996年第一次上市,當時的作物僅含有單一結晶蛋白;但為了預防極可能發生(也真的發生了)的抗性,研究團隊開始發展含有多個結晶蛋白的抗蟲作物(pyramided Bt crops,以下略稱為多重抗蟲作物),並於2002年上市。

在這六年間,難道沒有抗Bt害蟲出現嗎?答案是:有的。事實上,在1985年便已經發現對Bt產生抗性的印度谷螟(Plodia interpunctella)。因此,在抗蟲作物上市後,各國都要求種植抗蟲作物的農民必需設置隔離區(refuge)。隔離區是什麼呢?就是在種植抗蟲作物的田地旁邊,種植不帶有抗蟲基因的農作物。這些農作物提供害蟲生長繁殖的地區,當抗性害蟲出現時,由於基因突變通常頻率不高,因此在有隔離區的狀況下,抗性害蟲為少數,於是抗性害蟲有較高的機率與不具抗性的害蟲交配。在抗性基因為隱性突變的前提下,當抗性害蟲與不具抗性的害蟲交配後,所生出的子代便不具有抗性,當他們食用了抗蟲作物後,便會死亡。

印度谷螟。圖片來源:wiki
但是,隔離區要奏效,必需要有許多因素配合。首先,隔離區要夠大(至少要佔農地的20%),如果不夠大、或是農民在隔離區噴灑農藥殺死害蟲,那麼隔離區就沒有用了。接著,基因突變的頻率要夠低,而且突變基因要是隱性。如果是顯性、或是突變的頻率偏高,那麼隔離區必需要擴大到至少為種植抗蟲作物的一半面積,才有可能延遲抗性害蟲的出現20年(這裡說的不是不會出現喔!)。再來是,不論在作物的哪一個階段,抗蟲作物裡面的結晶蛋白要能夠殺死幾乎全部的害蟲;也就是說,作物內的抗蟲蛋白不僅要有效,而且濃度要穩定。最後,如果抗性突變使害蟲在不含有抗蟲基因的作物上的競爭力減弱,這也可以使抗性害蟲晚些出現。

但是,目前已經知道,當作物開始開花結果的時期,抗蟲蛋白的濃度會降低。這時候就代表原先設計的隔離區要擴大了!可是隔離區越大,代表收益越差;因為隔離區就是要用來養蟲,所以在隔離區能收穫的農作物一定不多、賣相也差。

所以,農民們無不企盼著多重抗蟲作物的上市,能解決這些問題。不過,真的解決了嗎?

答案是,在一些條件能配合的狀況下,多重抗蟲作物可以有較小(注意:不是沒有)的隔離區。

什麼條件呢?首先,隔離區當然還是不能噴農藥;接著,害蟲對於不同的結晶蛋白間,不存在著交叉作用(cross-reactivity)。最後,最好是所有的農田一次全部換成多重抗蟲作物。當然,基因突變率、突變基因為隱性或顯性、抗蟲蛋白的濃度的穩定性還是都要列入考慮的。

那麼,從2002年到現在,有新的抗性害蟲出現了嗎?

答案是:有,而且很多。將2005年與2010年相比,有五個區域(包括了南美洲、美國與印度)都出現了超過一半的害蟲出現抗性,這使得抗蟲玉米的功效變差了(下圖紅色部分)。而在2005年時,只有棉鈴蟲(Helicoverpa zea)出現抗性,但是在2010年時,除了棉鈴蟲以外,玉米秸稈螟(Busseola fusca)、西方玉米根蟲(Diabrotica virgifera virgifera)、斜紋夜蛾(Spodoptera frugiperda)、棉紅鈴蟲(Pectinophora gossypiella)都出現了抗性;而結晶蛋白依然有效的區域(下圖綠色部分),已由2005年的絕大多數,退到不到三分之一了。

2005與2010年抗性害蟲出現情形。圖片來源:Nature Biotechnology
為什麼會這樣呢?簡單來說,人性。在多重抗蟲作物上市前的田間研究顯示,如果多重抗蟲作物與只含單一抗蟲基因的作物一起種植,產生抗性害蟲的機率會提高;於是建議一次要把所有的基改作物都換成多重抗蟲作物。但是,美國就是做不到,硬就是拖了八年才換完。所以,超過一半的害蟲出現了抗性的五個地區,美國就佔了三個。相對的,澳洲當年就是一次到位,全部換完,所以目前這些害蟲在澳洲依然對抗蟲玉米無奈何。

當然,這個調查也發現,許多地區的害蟲突變率,比原先設想中的要高。這麼一來,當初建立的電腦模型就要重來,當然隔離區也要擴大。

不過,也不全部都是壞消息。在另一個大型研究發現,最常見的突變發生在結晶蛋白的第二個區位(domain II)。結晶蛋白共有三個區位,其中第二與第三區位對結晶蛋白是否能與昆蟲的中腸細胞結合很重要。在第二區位發生突變,會使結晶蛋白無法與中腸結合,於是便失去效用。過去只知道第二區位很重要,但是在這個大型研究中發現,第三區位也有其重要性。因此,未來在設計新的結晶蛋白時,多留意第二與第三區位的相似性;不要把這兩個區位相似的結晶蛋白基因同時轉入作物,可以設計出較有效果的多重抗蟲作物。

聽來似乎抗蟲作物尚大有可為?不過,永遠都不要高估了人性。雖然澳洲模式告訴我們,只要所有的農民們一起合作,要讓抗蟲作物的抗蟲效果存續較長的時間,並非不可能;但研究團隊也發現,即使是相似度很低的結晶蛋白,交叉作用依然無法完全避免。而人性永遠都是難以預估的;筆者深深覺得,基改作物要能夠永遠在地球上睥睨群「蟲」,是不可能的事,或許更應該思考的事是:如何建立對大自然友善的生存模式吧?

最近義美的高總經理出面反對政府提倡基改作物,或許筆者漏看新聞,沒有看到政府提倡基改作物的消息;如此消息為真,筆者也非常的憂慮。為什麼呢?因為政府光是協調農民不要過度栽種高麗菜、柳丁等農作物都辦不到,如何能夠讓農民乖乖的在基改作物的旁邊設置隔離區?唉!

參考文獻:

2015/2/8。中央社。義美:政院領軍攻基改作物 禍害農地

Bruce E. Tabashnik, Thierry Brevault & Yves Carriere. 2013. Insect resistance to Bt crops: lessons from the first billion acres. Nature Biotechnology. 31(6):510-521 doi:10.1038/nbt.2597

Yves Carriere, Neil Crickmore & Bruce E. Tabashnik. 2015. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nature Biotechnology.33, 161–168 doi:10.1038/nbt.3099

McGaughey WH. 1985. Insect Resistance to the Biological Insecticide Bacillus thuringiensis. Science. 229(4709):193-5.

留言

張貼留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

光合作用(photosynthesis)釋放氧氣,氧氣來自於水

  圖片來源: 維基百科 說真的,我雖然有時候也會寫一些「老」發現,但是像這樣幾乎每一本生物教科書與植物生理學教科書都會提到的事情,我還真的沒有想過要寫。 事情是這樣開始的。 2024年的6月1日下午,我收到記者的信息,內容如下: 今天北市教甄題目出現「植物行光合作用釋放出氧,氧來自何者?選項有A二氧化碳、B水、C葡萄糖、D空氣中的氧。」但答案是A的爭議,想請問現在能就這個題目跟您進行簡短採訪釋疑嗎? 我一看之下大驚失色,答案怎麼會是A呢?當然是B。 但是,說話要有證據,於是我就去查了幾本書,再加上網友的協助,最後得到的答案如下: 在1931年時,當C. B. van Niel(1897-1985)觀察光合細菌(包括紫硫菌與綠硫菌)時,因為這兩種細菌利用硫化氫(H 2 S)與二氧化碳為原料,產生元素硫,所以他就提出「光合作用的氧氣來自於水」的假說。  他的假說,在1941年,由Ruben等人以同位素氧18標定的水或二氧化碳確認,光合作用放出來的氧氣是來自於水。 答案是B才對啊! 所以我就發了一篇短文說明。 沒想到,後來看到的新聞竟然是: 圖片取自顏聖紘老師臉書 只能說真的蠻失望的。然後我點進去看了一下幾個新聞,老師堅持不改,這讓我覺得很失望;但更好笑的是,教育局說他們「尊重專業」,所以老師說不改就不改。 什麼時候,「尊重專業」可以這樣用了?難道Ruben等人的實驗就可以不算? 於是我就去挖出了Ruben等人的論文。 Ruben等人 (1941) 使用氧的同位素 (O 18 ) 作為追蹤劑,探討了光合作用中氧氣的來源。他們把綠藻 (Chlorella) 懸浮在含有重氧水 (H 2 O 18 ) 和一般碳酸氫鉀 (KHCO 3 ) 的溶液中。實驗結果顯示,釋放出的氧氣中的 O 18 /O 16 比例與水中的比例相同。 另外,當藻類在含有O 18 標記的二氧化碳 (CO 2 ) 和一般的水 (H 2 O) 中進行光合作用時,釋放出的氧氣中並沒有檢測到O 18 。 所以,實驗結果顯示:氧氣來自於水,而不是二氧化碳。 我其實很好奇,北市教甄出題的老師不改答案的理由是什麼?難道他自己做實驗發現氧氣來自於二氧化碳嗎?如果這樣,那可真的是諾貝爾等級的發現,應該趕快聯絡Nature或Science來發表啊!為什麼只有在教甄的答案上發表呢? 如果是弄錯了,那改一...