跳到主要內容

高溫下的番茄(tomato)奇蹟:解鎖更大果實的秘密

 

圖片來源:維基百科

原生於南美洲西部沿岸的高地,據信是由科爾特斯(Hernán Cortés,1485-1547)帶回歐洲的番茄,已經成了許多人餐桌上不可或缺的成員:不論是番茄醬或含有番茄的料理,它那酸酸甜甜的滋味賦予菜餚特殊的風味。

但是你有所不知的是,野生品系的番茄其實大小與小番茄差不多大,且成熟時外皮也不是紅色的,而是黃色或橙色的。所以草藥師馬第歐尼(Pietro Andrea Mattioli,1501-1577),在1544年寫《金蘋果》(Mala Aurea)這本書時,以「剛長出來時為青綠,成熟後則轉變成黃金般的顏色」來描述番茄的型態。

由於發源於高地,因此番茄並不怎麼耐熱。如果白天高於攝氏32度、夜間高於攝氏24度,番茄的花就會無法發育、果實也會無法成熟。當然,人類是不會因為這樣就罷休的,所以在二十世紀時,許多育種學家就培育出了「熱帶番茄」--也就是耐高溫的番茄品系。這些番茄在溫度高於攝氏32度時仍然可以開花結果,產量也不受影響。

過去的育種常常是知其然而不知其所以然,培育出了優良品系,卻不知道到底是因為什麼原因讓它成了「好種」。最近在中國的研究,便利用了一個相當受歡迎的品系「Moneymaker」(這名字真的是非常直接)與野生櫻桃番茄(S. lycopersicum var. cerasiforme,簡稱CC)來進行「定量數位基因座」(QTL)的分析,希望能找到重要的基因。

野生櫻桃番茄在高溫條件下確實表現出對溫度的敏感性。在夏季生長周期(高溫條件,日平均溫度為32.2°C,最高溫度達38.7°C)中,與春季生長周期(正常溫度條件,日平均溫度為23.2°C,最高溫度為26.2°C)相比,野生櫻桃番茄的果實重量下降,而花序分枝顯著增加。相對野生櫻桃番茄,「Moneymaker」品系則沒有顯著變化。這意味著野生櫻桃番茄對高溫的反應更為敏感,尤其是在花序分枝和果實發育方面更為明顯。

選擇「Moneymaker」這一品系的番茄進行研究的理由是,「Moneymaker」作為一個已廣泛種植且具有代表性的番茄品系,其遺傳背景清晰,是研究番茄果實大小與花序架構對溫度變化反應的理想材料。

研究團隊將「Moneymaker」與野生櫻桃番茄雜交後的子代在高溫(HT)條件下種植,來尋找調控番茄多重花序分枝數量性狀基因座。他們在北京的溫室中進行了高溫條件的實驗,每日平均溫度為32.2°C,最高溫度為38.7°C,光照為12小時/12小時的黑暗/光照週期。

研究團隊進行QTL分析後,發現一個位於第二染色體上、名為qMIB2(MULTIPLE INFLORESCENCE BRANCH 2)的QTL。分析這個QTL後發現了MIB2基因,它在高溫時於頂芽分生組織表現量上升,造成番茄產生更多的花序,以確保果實的數量不會下降。事實上,在「Moneymaker」品系中,MIB2基因因為一個單核苷酸插入突變導致了早期轉譯終止。這意味著在「Moneymaker」品系中,MIB2基因失去了功能,這與其在高溫條件下維持較大且均勻的果實大小的能力有關。

研究MIB2後發現,它是一個轉錄因子。在高環境溫度下,MIB2表現量上升,然後會使SlCOL1在生殖分生組織中的表現量上升,造成在高溫環境下能夠維持或甚至增加花序數量。

研究團隊認為,許多「熱帶番茄」品系,可能都帶有mib2突變,這就是為什麼它們能夠在高溫下仍生產夠大的果實的原因。

參考文獻:

Sun, S., Liu, Z., Wang, X. et al. Genetic control of thermomorphogenesis in tomato inflorescences. Nat Commun 15, 1472 (2024). https://doi.org/10.1038/s41467-024-45722-0

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N