跳到主要內容

自然香氣的守護:植物氣味如何保護作物免遭動物侵害

 

羽葉石南香。圖片來源:維基百科

人類種植作物,當然是提供給自己使用,而不是給其他生物使用的。因此我們有了農藥來防止蟲害、病害,但是昆蟲之外的其他動物取食卻比較難防止。因為牠們體型較大,所以要用農藥來防止也相對困難得多。另外是,即使是對昆蟲,有時因為宗教或理念,我們也並不那麼想要趕盡殺絕。

當然,我們可以用忌避劑,忌避劑(repellent)是用於農業和園藝中,用以防止動物和昆蟲對植物的取食或損害的藥劑。它們通常能夠發出強烈氣味或具有不好的味道,以驅趕特定害蟲或動物的化學物質。它們不傷害動物,只是讓它們遠離作物。忌避劑可以是自然來源的,也可以是合成的,並且它們的使用需要考慮到環境影響和對目標以外生物的影響。

傳統的忌避劑通常包括自然物質,如辛辣植物油(例如辣椒油)、強烈氣味的物質(如大蒜油或魚油),以及某些商業化學品。這些物質利用害蟲或動物的嗅覺或味覺敏感性,以避免它們接近或取食作物。

商業化學忌避劑通常效果都很好,但是對環境或多或少會造成負擔。最近有一個研究,想要利用小袋鼠(wallabies)不喜歡的氣味來防止牠們吃灰桉(E. punctata)。

研究團隊發現,小袋鼠不喜歡一種芸香科植物羽葉石南香(Boronia pinnata)的味道。當然,我們可以在灰桉旁邊種羽葉石南香,但是這麼一來羽葉石南香有可能會搶走灰桉的水分與養分,如果長得比灰桉快,更可能會搶走灰桉的陽光。

所以研究團隊想,如果可以開發羽葉石南香的忌避劑,那樣就不用擔心小袋鼠,也不需要種植羽葉石南香在灰桉旁邊了。

但是,萬一小袋鼠不喜歡羽葉石南香只是都市傳說怎麼辦?所以研究團隊設計了一系列的實驗。

研究團隊做了三種人工氣味:虛擬鄰居:信息性、非信息性和翻轉比例。

信息性虛擬鄰居當然就是含有羽葉石南香關鍵氣味,而且比例是正確的。

非信息性虛擬鄰居則是由七種新的揮發性有機化合物(VOCs)組成,這些化合物在羽葉石南香中被檢測到,但未達到研究者設定的可靠性閾值。換句話說,這些化合物對小袋鼠應該是沒用的。

翻轉比例虛擬鄰居則是將信息性虛擬鄰居中的信息性VOCs的相對量進行反轉。這個處理旨在測試信息性VOCs的相對量對保護效果的影響,而不僅僅是它們的存在與否。

另外,還有程序控制虛擬鄰居就是空的虛擬鄰居氣味分配器。這個處理旨在確保任何草食動物啃食效應不是由於氣味分配器本身的存在。做實驗就是要這麼認真啊!

研究團隊將六種處理(包括真實羽葉石南香、信息性虛擬鄰居、非信息性虛擬鄰居、翻轉比例虛擬鄰居、程序控制和未處理對照)部署在研究場地的地塊中,每種處理有15個地塊,地塊之間至少相隔50米。在每個地塊中,將五個虛擬或真實鄰居放置在一個圓圈(半徑1米)周圍,圓圈中心是一株灰桉幼苗。對於虛擬鄰居,人工氣味(總量為2.96毫升)被放置在一個玻璃琥珀擴散瓶中,並放置在一個訂製的氣味分發器中。為了評估處理的有效性,研究人員量化了境內第一次被草食動物啃食灰桉幼苗所需的時間。

結果發現,當灰桉幼苗被放置在信息性虛擬鄰居中時,草食動物啃食的時間與真實羽葉石南香相當,這顯示信息性虛擬鄰居可以提供與真實植物相當的保護效果。具體來說,灰桉幼苗被放置在未處理對照組中最快被啃食,而被放置在信息性虛擬鄰居中最慢被啃食,這顯示信息性虛擬鄰居可以提供與真實植物相當的防止被草食動物啃食的保護,也就是說,小袋鼠的確不喜歡羽葉石南香的氣味,而以正確比例羽葉石南香的氣味製作的「香水」也的確可以防止小袋鼠吃灰桉。

參考文獻:

Finnerty, P.B., Possell, M., Banks, P.B. et al. Olfactory misinformation provides refuge to palatable plants from mammalian browsing. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02330-x

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N