跳到主要內容

含羞草會學習?

含羞草。圖片來源:wiki

動物可以透過反覆練習來學會一項技能,植物是否也有學習的能力呢?

要測試植物是否能學習,首先就會遇到一個問題:如何建立一個系統證明植物會學習。畢竟植物不是動物,身為動物的我們,要教導植物某一件事或許不難,但是要如何幫植物「考試」、確定它已經會了,這部分可真的不簡單。

來自澳洲的研究團隊,決定以含羞草(Mimosa pudica,the sensitive plant)為樣本進行測試。研究團隊做了一個植物的「大怒神」系統,可以讓含羞草在相同的短時間內往下垂直掉落15公分。當含羞草坐完「大怒神」以後,它的葉子會閉合一段時間再慢慢打開;等到它的葉子完全打開以後的5-10秒,再讓它坐一次「大怒神」。

這樣反覆在一天內進行60次(含羞草:我不要坐那麼多次大怒神啦!)以後,研究團隊發現含羞草的反應變小了。而且,在高光度與低光度下生長的含羞草,對於反覆刺激的反應明顯的不同;在低光度(每平方公尺每秒照射90微莫爾的光子)下的含羞草,在反覆刺激以後,很明顯的有反應變小的現象。

但是,這真的是學習行為嗎?會不會是含羞草被搖到彈性疲乏了?為了證明含羞草不是因為被搖到彈性疲乏,研究團隊設計了另一種刺激:「大地震」!將植物放在震盪器上面,以每分鐘250下的速度搖五秒。如果換另一種刺激,含羞草可以馬上做出反應;就顯示了它並不是彈性疲乏,而是對於同一種刺激的反覆出現,它習慣了、並決定不予理會。

實驗結果發現:坐過幾十次「大怒神」的含羞草,在換玩「大地震」以後,還是可以立即做出反應。這顯示了,含羞草真的有學習的能力唷!只是,為什麼在高光度下(每平方公尺每秒照射230微莫爾的光子)的含羞草在反覆刺激以後,反應不會明顯變小呢?

讓我們先想想含羞草為什麼要「羞」。我們都知道含羞草只要一碰,葉片就會閉合;如果碰觸的強度夠高,不只是葉片會閉合,連葉柄也會跟著下垂。碰觸的刺激意味著什麼呢?

在自然界,碰觸的刺激表示附近可能有吃草的動物開始「甲崩」。而閉合的葉片與下垂的葉柄,可以讓含羞草在食草動物的視覺範圍內消失(請參考下面兩張取自維基百科的圖)。

被碰觸之前的含羞草。圖片來源:Wiki
被碰觸之後的含羞草。圖片來源:Wiki
草不見了,吃草的動物當然就不會去吃它;所以含羞草藉著「害羞」的動作,可以減少自己被吃掉的機率。但是,葉片閉合同時也意味著進行光合作用的面積減少了。對植物來說,減少光合作用是非常不利的,所以過一段時間之後,如果沒有更多刺激,含羞草就會把葉片慢慢打開。

在高光度的狀況下,植物進行光合作用的速度當然比低光度的時候要快。在高光度的環境下,因為光合作用的產物已經足夠,對於持續的、重複的刺激,雖然可能是背景噪音,但也不妨做出反應,多少可以降低可能被吃的風險;而在低光度時,因為光合作用的產物還不大夠,所以對於可能是背景噪音的刺激,還是不予理會對自己的生存比較有利。

這個現象,在研究團隊將含羞草先放在高光度或低光度的環境下四週後,再更換光照條件時,看到的結果更能證明這一點。原先生長於低光度的含羞草,在改變為高光度後,一開始對重複的、持續的刺激的反應變得敏感;而由高光度移往低光度的組別,在一開始對刺激的反應也呈現敏感度降低的狀況。

所以,植物的確是有(一些)學習能力的喔!只是我們不知道怎麼測試而已!

後記:其實在「植物比你想的更聰明:植物智能的探索之旅」中有記載,在十八~十九世紀時,拉馬克(Jean-Baptiste Lamarck,1744-1829)與德堪多(Augustin Pyramus de Candolle,1778-1841)便已經發現含羞草會記得生活環境中的雜訊,並不予理會喔!有興趣的朋友們可以去找這本書來看喔!

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

Gagliano M. et. al., 2014. Experience teaches plants to learn faster and forget slower in environmnts where it matters. Oecologia. 175:63-72

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N