跳到主要內容

霞櫻的黑熊便車

全球暖化已經成了地球上所有生物的大考驗。動物可以遷徙,往高緯度(latitudinally)或高海拔(altitudinally)移動;但是不能移動的植物要怎麼辦呢?

雖然植物不能移動,但是種子可以經由水力、風力與動物的散播,前往遠處。不過,可以藉風散播的植物種子,或許可以乘風往高緯度或高海拔移動(只要風向對的話)。水力就要看河流、洋流的方向了。運氣好,可以往高緯度移動;運氣不好,就只能往低緯度與低海拔地區移動了。至於藉由動物移動的種子們,又怎麼能控制動物移動的方向呢?

來自日本的研究團隊,以當地的本土植物霞櫻(Prunus verecunda)作為研究標的,在2010-2013年於日本中部,研究亞洲黑熊(Asiatic black bear,Ursus thibetanus)與日本貂(Japanese martens,Martes melampus)的糞便裡面的霞櫻種子發現,這兩種動物會在春夏兩季將霞櫻的種子帶往山頂。由亞洲黑熊帶上去的佔八成,其餘則由日本貂來達成。

亞洲黑熊。圖片來源:Wiki

研究團隊是怎麼知道這些霞櫻種子屬於較低海拔區域的呢?原來,氧原子有兩種同位素,一種是18O,另一種是16O。過去的研究發現,越往高海拔移動,這兩種同位素的比值( δ18O,18O/16O)就越小。所以,如果牠們糞便中的霞櫻種子的氧同位素比值,與同海拔地區的其他植物組織內的比值不同,就代表這些種子是來自於不同海拔高度;而如果呈現負相關(也就是往高海拔δ18O反而提高),就代表了這些種子是由低海拔區域帶上去的。而由比值的變化程度,更可以計算出這些種子大約是來自於哪一個海拔高度呢!

分析霞櫻種子裡面的氧同位素比例發現,亞洲黑熊平均約可以把種子往高海拔區域移動750公尺,而日本貂因為體型較小,只能往上移動460公尺。不過,即使只有升高海拔460公尺,溫度也已經降低了攝氏1.3度;至於750公尺則可以降低攝氏2度,以目前全球的升溫狀況來看,對霞櫻來說也已經足夠維持它們的生存。

日本貂。圖片來源:wiki

當然,不論是亞洲黑熊還是日本貂,都並不會刻意把種子帶上去。牠們都是雜食性動物,在春夏二季,受到了霞櫻香甜的果實吸引,在連果肉帶種子地吞食下去後,接著便意猶未盡地往高海拔地區移動,繼續尋找其他的果實或嫩葉。種子在經過牠們的腸道後,大約45個小時後(以亞洲黑熊為例)便隨著糞便排出,若那時牠們剛好在更高海拔區採食,種子便到了高海拔的地區。

當然,牠們在秋冬的時候也會有往低海拔地區移動的情形。這個狀況特別是在氣候不佳、食物不豐富的年頭,因為需要過冬要儲存養分,往低海拔區尋找食物的狀況更加明顯。但由於霞櫻開花結果的時間是在春夏,在那個時間牠們每天覓食的路徑大多是由低海拔區域往高海拔區域移動,於是就造成了研究團隊看到的往高海拔地區移動的狀況了。

所以,即使是無法藉風力、水力散播的植物種子,一樣可以搭其他生物的順風車往想去的地方移動--只要這順風車走對方向的話。因此,研究團隊也指出,在植物的散播上,藉助動物的力量這一環也是不容忽視的。而以氧同位素比例(δ18O)作為分析工具,更可以作為研究垂直散播的重要工具。相比於耗時費資源的分析基因體來找尋親本,氧同位素比例分析不啻為一個較為低成本且快速的方式。

許多植物苦心孤詣發展出誘人的果實,就是為了要吸引動物來採食之後,順便把種子帶往遠處去散播。在索爾‧漢森的「種子的勝利」一書中提到,全世界的植物中,大約有三分之一的種子是依靠動物來散播的。當然,往高海拔地區移動,雖然短時間內解決了暖化所帶來的問題,但是如果山不夠高的話,等到了山頂之後,若全球升溫的程度仍未稍減(估計到2100年時,全球升溫最高可達攝氏4.8度),這時就算有黑熊與日本貂,只怕也幫不上什麼忙了?

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

Shoji Naoe et. al., 2016. Mountain-climbing bears protect cherry species from global warming through vertical seed dispersal. Curr. Biol. DOI: http://dx.doi.org/10.1016/j.cub.2016.03.002

R. L. Burk and M. Stuiver. 1981. Oxygen Isotope Ratios in Trees Reflect Mean Annual Temperature and Humidity. Science. 211(4489): 1417-1419. DOI: 10.1126/science.211.4489.1417

留言

這個網誌中的熱門文章

為什麼「種豆南山下,草盛豆苗稀」?

陶淵明在「歸園田居」詩中,曾經提到「種豆南山下,草盛豆苗稀」。這首詩大家都很熟了,也是很受歡迎的國文教材,但是,有多少人認真去想為什麼「草盛豆苗稀」呢?難道只是因為陶淵明不會種田嗎?

雖然根據歷史的記載,「歸園田居」可能真的就是在他剛隱居的時候寫的(1);而在那時候,可能他的耕種技術也的確是還有待提升;不過筆者卻認為,從生物學的角度來看,「草盛豆苗稀」也不全是耕種技術的問題。

首先,我們來看一下氣候。陶淵明隱居的地點在潯陽柴桑,也就是現在的江西省九江市星子縣。當地是北緯29.44度,在北回歸線以北,屬於濕潤型亞熱帶氣候(2),1971-2000的年平均溫度為攝氏17.03度,每年四月就不再有攝氏零度以下的低溫(3)。雖然還是比臺灣偏北(台北市是北緯25.02度),大致上還是屬於溫和的氣候,植物的種類應該也不會相差太多。即使考慮近年來全球暖化的問題,應該也不會超過攝氏一度(4)。

在亞熱帶的台灣,夏天通常並不是植物茂盛生長的時期。為什麼呢?因為世界上90%的陸生植物是C3植物,這些植物在氣溫超過攝氏30度時,會因為光呼吸作用(photorespiration)造成水分的消耗大量上昇。C3植物(如大豆)在攝氏30度時,每抓一個二氧化碳分子就要消耗833個水(5),於是植物的生長速度就開始變慢。

不過,並不是所有的植物在夏天時生長速度都會變慢唷!有些植物,如玉米、甘蔗等,反而在夏天時長得特別好。為什麼呢?

原來玉米與甘蔗是所謂的C4植物,它們既耐熱又耐旱,跟C3植物比較起來,在攝氏30度時C4植物每抓一個二氧化碳的分子只消耗277個水(5),所以夏天的時候,它們的生長速度ㄧ點都不受影響呢!
說到這裡,讀者可能會想:什麼是C4植物?為什麼它們能夠既耐熱又耐旱呢?
所謂的C3、C4植物,指得是它們在光合作用上的不同。C3植物進行光合作用時,是由卡爾文循環(Calvin cycle)的酵素(RuBisCo,如圖二)直接抓取溶解在細胞中的二氧化碳,與核酮糖1,5-二磷酸(ribulose 1,5-bisphosphate,RuBP)進行反應;


而C4植物則在卡爾文循環上面,又增加了幾個步驟,而且這幾個步驟還跟卡爾文循環在不同的組織中進行呢(如圖三)!為什麼會這樣呢?


原來,C4植物多半都生活在亞熱帶或熱帶,在這些氣候區,植物進行光合作用時,會遇到一個大問題。

這個問題來自於卡爾文循環的第…

孔雀秋海棠的光合作用魔術

原產於馬來西亞雨林的孔雀秋海棠(Begonia pavonina),只有在光線極弱的狀況下葉片會出現藍色。當光線夠強的時候,葉片上的藍色就不會出現了。

因為這藍色是如此的美麗,使它得到了「孔雀秋海棠」(peacock begonia)的美名。大家搶著種它,想要看到那美麗的孔雀藍;但到底為什麼要出現這美麗的孔雀藍呢?

通常我們都認為,在葉片裡面除了葉綠素以外的光合色素,都是輔助色素:在光線不夠時,幫忙吸收更多光能;在光線太強時,把多餘的能量發散。所以孔雀秋海棠的孔雀藍,是否也是一種輔助色素呢?

之前的研究已經發現,這些孔雀藍,應該是來自於被稱為虹彩體(iridoplast)的一種色素體(plastid)。虹彩體位於葉片上表皮的細胞中,為葉綠體的變體。在最近的研究發現,這些虹彩體的類囊體(thylakoids)以一種不尋常的方式排列:每疊葉綠餅(grana)由三到四個類囊體組成,厚度約為40奈米;而一疊一疊的葉綠餅之間的距離約為100奈米。


一般的葉綠體,通常葉綠餅的排列是散亂的(如圖);孔雀秋海棠的虹彩體的葉綠餅卻排得如此整齊,有什麼作用呢?

研究團隊測量了20個虹彩體,發現它們的特殊構造賦予它們反射435~500奈米的光波的能力。這個波長正好就是藍光波段的最右邊,與綠光交界的位置。這就是為什麼孔雀秋海棠是藍色的原因吧!

不過,這些虹彩體不只是會反射藍光而已。研究團隊還發現,虹彩體讓孔雀秋海棠吸收較長波的綠光與紅光的能力提升了!這對孔雀秋海棠是非常重要的,因為它們通常在熱帶雨林的地面上生長。

在熱帶雨林裡,光線都被大樹給遮住了,使得地表的光線極弱。弱到怎樣的地步呢?大約是樹冠光線強度的百萬到千萬分之一喔!而且還不只是光線變弱而已,因為雨林中的大樹們把進行光合作用所需的兩個主要波段的光(460奈米與680奈米)都吸收得差不多了,在這樣的環境下,孔雀秋海棠如果不發展出吸收一點綠光的本事,還真的會混不下去。

事實上,因為這些特殊的構造,虹彩體比一般的葉綠體進行光合作用的效率更高。研究團隊藉著測量葉綠體的螢光(葉綠體進行光合作用時,一部份的葉綠素會把吸收的光以暗紅色的螢光發射出去;所以可以藉著測量螢光了解植物進行光合作用的效率)發現,虹彩體進行光合作用的效率,比一般的葉綠體都好。不過,當光線變強的時候,虹彩體的效率就沒有那麼好了;這或許就是為何,當我們把孔雀秋海棠種在光線…

【原來作物有故事】鳳梨 漂洋過海在臺灣發揚光大

作者:葉綠舒、王奕盛、梁丞志

在台灣提到鳳梨,一定會想到鳳梨酥這代表台灣的伴手禮。但是鳳梨其實不是台灣原產的水果喔!鳳梨原產於熱帶南美洲,在哥倫布1493年的第二次航行時於瓜德羅普的村莊中發現後引進歐洲,約於16世紀中葉傳入中國;台灣則是在1605年先由葡萄牙人引進澳門,再由閩粵傳入台灣,至今已有三百多年歷史。

在台灣,鳳梨因為台語諧音「旺來」很吉利而廣受大眾喜愛,但其實鳳梨的名字是根據它果實的型態來的,因為果實的前端有一叢綠色的葉片,讓以前的人覺得很像鳳尾,加上果肉的顏色像梨,所以就取名為「鳳梨」。至於英文的名稱也是因為果實的外型像毬果、而肉質香甜,所以就被取名為「松蘋果」(pineapple)啦!其實鳳梨果實的毬果狀的外觀主要是因為鳳梨是「聚合果」,每顆鳳梨是由200朵鳳梨花集合而成的!而它的學名Ananas則是來自於圖皮語,意思是很棒的水果。

在哥倫布把鳳梨引進歐洲以後,因為它的香甜好滋味讓它大受歡迎;但是身為熱帶水果的鳳梨,在溫帶的歐洲長得並不好!為了要讓王公貴族們吃到鳳梨,十六世紀的園丁們發明了「鳳梨暖爐」:把單顆鳳梨放在由馬糞堆肥做的暖床上的木製棚架,並升起爐火來保持溫暖,好讓鳳梨這熱帶植物可以在溫帶的歐洲開花結果;世界上第一個溫室就這樣誕生了,並由此開啟了歐洲建造溫室的熱潮!

鳳梨不只是改變了歐洲,在日本人到台灣後,嚐到了鳳梨的香甜滋味,便開始推動鳳梨產業。1903年,岡村庄太郎於鳳山設置岡村鳳梨工廠,生產鳳梨罐頭;後來逐漸形成中部以員林、南部以鳳山為中心的鳳梨生產體系。在1938年時,鳳梨罐頭工廠女工竟然佔了全台灣女性勞動人數三分之一以上呢!光復以後台灣的鳳梨產業也曾在1971年登上世界第一,讓台灣被稱為「鳳梨王國」。但是後來不敵其他國家的競爭,已經由外銷罐頭改為多以內銷鮮食鳳梨為主的型態了。

從清朝、日治時代直到現在,台灣的鳳梨品系一直都一樣嗎?當然不是囉!最早的鳳梨被稱為「在來種」,後來日治時代為了製作罐頭方便,從夏威夷引進了開英種;到了1980年以後,因為罐頭外銷敵不過競爭,台灣的鳳梨改為內銷且以鮮食為主,為了挽救鳳梨產業,農改場、農試所便培育出各種不同適合鮮食的鳳梨:包括不用削皮可以直接剝來吃的釋迦鳳梨(台農4號),最適合在秋冬生產的冬蜜鳳梨(台農13號),有特殊香氣的香水鳳梨(台農11號),以及因為果肉乳白色被稱為牛奶鳳梨的台農20號等…