跳到主要內容

植物也有血紅素(hemoglobulin)?

大家都知道動物有血紅素,負責幫我們攜帶氧氣到全身各處。 但是植物有血紅素嗎?植物要血紅素做什麼?

照理說,植物應該不需要什麼蛋白質幫他們攜帶氧氣並運送到全身各處,畢竟光合作用本身已經讓植物細胞充滿氧氣了。

但是很有意思的是,植物真的有血紅素,雖然沒有紅血球。雖然我們一般認為血紅素的功能是攜帶氧氣,但科學家研究的結果認為,血紅素最早的功能應該是偵測氧氣的存在,而不是攜帶氧氣(1)。

在植物裡總共有三種血紅素,第一種稱為「共生血紅素」(symbiotic,sHbs),主要分佈在豆科植物裡面,提供共生的根瘤菌以及根瘤內的植物細胞生存所需的氧氣。因為固氮作用(nitrogen fixation)是厭氧的反應,在有氧氣的存在下,根瘤菌內的固氮酵素(nitrogenase)會很快失去活性,因此在根瘤中必需維持在微氧(microaerobic)的狀態下:只能有一點點氧氣來提供根瘤菌與根瘤內的植物細胞生存,但是不能太高造成固氮酵素失去活性。因此,豆科植物中都有「共生血紅素」的存在。

第二種稱為「非共生血紅素」(non-symbiotic,nsHbs),分佈得非常廣泛,依照序列的分析、在植物中表現的狀況以及與氧氣結合的特性分為兩大類。單子葉植物多半沒有第二類的非共生血紅素(nsHb2),但是會有至少一個第一類非共生血紅素(nsHb1);而雙子葉植物通常會具備兩類,不過在豆科植物(以及部分雙子葉植物)中已經演化為共生血紅素了。

第三種稱為「片段血紅素」(truncated, trHbs)。

非共生血紅素到底有什麼功能呢?目前的研究結果認為,第一類可能與缺氧有關,在缺氧時用來改進植物的能量狀態;第二類則與粒線體細胞呼吸作用有關,在粒線體進行細胞呼吸作用時可以改進他的氧氣供應狀態(2)。

最近,瑞典的隆德大學(Lund University)的研究團隊,在甜菜(sugar beet,Beta vulgaris ssp. vulgaris)裡面找到了四個血紅素的基因,其中三個是非共生血紅素,第四個是片段血紅素。三個非共生血紅素裡面有兩個屬於第一類,一個屬於第二類。其中第二類的非共生血紅素(BvHb2)的表現量最高,而且在不同的部位裡表現量都很大(種子除外)。

甜菜根的橫切面。圖片來源:wiki

表現量有多大呢?一公頃的甜菜,可以萃取出一至兩公噸的血紅素;而隆德大學的研究團隊說,甜菜的血紅素跟人的血紅素非常相像,因此,他們希望能讓甜菜的血紅素做為輸血時的緊急備品(3)。畢竟,遇到重大車禍或是如伊波拉這類的疾病時,能否提供大量血液,常常是決定生與死的重要因素;尤其是在血庫不普遍,或是捐血的觀念尚未深入人心的區域,血源不足是常有的問題,如果能夠提供甜菜的血紅素做為緊急的備品,應該可以救活許多人命。

在歐洲,甜菜主要用於製糖;如果甜菜的血紅素真的可以用於人體做為輸血的備品,那麼以後在甜菜中萃取糖的過程中,也可以順便萃取甜菜血紅素。

想當初,甜菜之所以被發現,是在拿破崙戰爭時期,因為英國皇家海軍阻擋了由西印度群島來的運糖船,使得拿破崙注意到馬格列夫(Andreas Sigismond Marggraf)對甜菜等根莖類植物的研究(4)。馬格列夫由甜菜根中萃取了蔗糖,不過甜菜糖正式量產要到1801年,那時候馬格列夫已經不在人世了。

馬格列夫。圖片來源:wiki
雖然手邊的資料無法確定,究竟當時馬格列夫是為了什麼去研究萃取甜菜糖的方法(後來他的學生改良他的方法,使甜菜糖能在1801年開始量產),但如果他知道,當初那長在地上看來不起眼的植物的根,除了提供我們蔗糖以外,未來可能還能提供血紅素做為輸血的備品,他應該會覺得很欣慰吧!

(台大科教中心擁有此文版權,其他單位需經同意始可轉載。)

參考文獻:

1. Serge N. Vinogradov and Luc Moens. 2008. Diversity of Globin Function: Enzymatic, Transport, Storage, and Sensing. The Journal of Biological Chemistry, 283, 8773-8777.

2. Nélida Leiva-Eriksson, Pierre A. Pin, Thomas Kraft, Juliane C. Dohm, André E. Minoche, Heinz Himmelbauer and Leif Bülow. 2014. Differential Expression Patterns of Non-Symbiotic Hemoglobins in Sugar Beet (Beta vulgaris ssp. vulgaris). Plant Cell Physiol 55 (4): 834-844.

3. Lund University. Sugar beets could become blood substitute.

4. Henry Hobhouse. Seeds of Change. Six plants that transformed mankind. Counterpoint.

留言

這個網誌中的熱門文章

為什麼「種豆南山下,草盛豆苗稀」?

陶淵明在「歸園田居」詩中,曾經提到「種豆南山下,草盛豆苗稀」。這首詩大家都很熟了,也是很受歡迎的國文教材,但是,有多少人認真去想為什麼「草盛豆苗稀」呢?難道只是因為陶淵明不會種田嗎?

雖然根據歷史的記載,「歸園田居」可能真的就是在他剛隱居的時候寫的(1);而在那時候,可能他的耕種技術也的確是還有待提升;不過筆者卻認為,從生物學的角度來看,「草盛豆苗稀」也不全是耕種技術的問題。

首先,我們來看一下氣候。陶淵明隱居的地點在潯陽柴桑,也就是現在的江西省九江市星子縣。當地是北緯29.44度,在北回歸線以北,屬於濕潤型亞熱帶氣候(2),1971-2000的年平均溫度為攝氏17.03度,每年四月就不再有攝氏零度以下的低溫(3)。雖然還是比臺灣偏北(台北市是北緯25.02度),大致上還是屬於溫和的氣候,植物的種類應該也不會相差太多。即使考慮近年來全球暖化的問題,應該也不會超過攝氏一度(4)。

在亞熱帶的台灣,夏天通常並不是植物茂盛生長的時期。為什麼呢?因為世界上90%的陸生植物是C3植物,這些植物在氣溫超過攝氏30度時,會因為光呼吸作用(photorespiration)造成水分的消耗大量上昇。C3植物(如大豆)在攝氏30度時,每抓一個二氧化碳分子就要消耗833個水(5),於是植物的生長速度就開始變慢。

不過,並不是所有的植物在夏天時生長速度都會變慢唷!有些植物,如玉米、甘蔗等,反而在夏天時長得特別好。為什麼呢?

原來玉米與甘蔗是所謂的C4植物,它們既耐熱又耐旱,跟C3植物比較起來,在攝氏30度時C4植物每抓一個二氧化碳的分子只消耗277個水(5),所以夏天的時候,它們的生長速度ㄧ點都不受影響呢!
說到這裡,讀者可能會想:什麼是C4植物?為什麼它們能夠既耐熱又耐旱呢?
所謂的C3、C4植物,指得是它們在光合作用上的不同。C3植物進行光合作用時,是由卡爾文循環(Calvin cycle)的酵素(RuBisCo,如圖二)直接抓取溶解在細胞中的二氧化碳,與核酮糖1,5-二磷酸(ribulose 1,5-bisphosphate,RuBP)進行反應;


而C4植物則在卡爾文循環上面,又增加了幾個步驟,而且這幾個步驟還跟卡爾文循環在不同的組織中進行呢(如圖三)!為什麼會這樣呢?


原來,C4植物多半都生活在亞熱帶或熱帶,在這些氣候區,植物進行光合作用時,會遇到一個大問題。

這個問題來自於卡爾文循環的第…

孔雀秋海棠的光合作用魔術

原產於馬來西亞雨林的孔雀秋海棠(Begonia pavonina),只有在光線極弱的狀況下葉片會出現藍色。當光線夠強的時候,葉片上的藍色就不會出現了。

因為這藍色是如此的美麗,使它得到了「孔雀秋海棠」(peacock begonia)的美名。大家搶著種它,想要看到那美麗的孔雀藍;但到底為什麼要出現這美麗的孔雀藍呢?

通常我們都認為,在葉片裡面除了葉綠素以外的光合色素,都是輔助色素:在光線不夠時,幫忙吸收更多光能;在光線太強時,把多餘的能量發散。所以孔雀秋海棠的孔雀藍,是否也是一種輔助色素呢?

之前的研究已經發現,這些孔雀藍,應該是來自於被稱為虹彩體(iridoplast)的一種色素體(plastid)。虹彩體位於葉片上表皮的細胞中,為葉綠體的變體。在最近的研究發現,這些虹彩體的類囊體(thylakoids)以一種不尋常的方式排列:每疊葉綠餅(grana)由三到四個類囊體組成,厚度約為40奈米;而一疊一疊的葉綠餅之間的距離約為100奈米。


一般的葉綠體,通常葉綠餅的排列是散亂的(如圖);孔雀秋海棠的虹彩體的葉綠餅卻排得如此整齊,有什麼作用呢?

研究團隊測量了20個虹彩體,發現它們的特殊構造賦予它們反射435~500奈米的光波的能力。這個波長正好就是藍光波段的最右邊,與綠光交界的位置。這就是為什麼孔雀秋海棠是藍色的原因吧!

不過,這些虹彩體不只是會反射藍光而已。研究團隊還發現,虹彩體讓孔雀秋海棠吸收較長波的綠光與紅光的能力提升了!這對孔雀秋海棠是非常重要的,因為它們通常在熱帶雨林的地面上生長。

在熱帶雨林裡,光線都被大樹給遮住了,使得地表的光線極弱。弱到怎樣的地步呢?大約是樹冠光線強度的百萬到千萬分之一喔!而且還不只是光線變弱而已,因為雨林中的大樹們把進行光合作用所需的兩個主要波段的光(460奈米與680奈米)都吸收得差不多了,在這樣的環境下,孔雀秋海棠如果不發展出吸收一點綠光的本事,還真的會混不下去。

事實上,因為這些特殊的構造,虹彩體比一般的葉綠體進行光合作用的效率更高。研究團隊藉著測量葉綠體的螢光(葉綠體進行光合作用時,一部份的葉綠素會把吸收的光以暗紅色的螢光發射出去;所以可以藉著測量螢光了解植物進行光合作用的效率)發現,虹彩體進行光合作用的效率,比一般的葉綠體都好。不過,當光線變強的時候,虹彩體的效率就沒有那麼好了;這或許就是為何,當我們把孔雀秋海棠種在光線…

【原來作物有故事】鳳梨 漂洋過海在臺灣發揚光大

作者:葉綠舒、王奕盛、梁丞志

在台灣提到鳳梨,一定會想到鳳梨酥這代表台灣的伴手禮。但是鳳梨其實不是台灣原產的水果喔!鳳梨原產於熱帶南美洲,在哥倫布1493年的第二次航行時於瓜德羅普的村莊中發現後引進歐洲,約於16世紀中葉傳入中國;台灣則是在1605年先由葡萄牙人引進澳門,再由閩粵傳入台灣,至今已有三百多年歷史。

在台灣,鳳梨因為台語諧音「旺來」很吉利而廣受大眾喜愛,但其實鳳梨的名字是根據它果實的型態來的,因為果實的前端有一叢綠色的葉片,讓以前的人覺得很像鳳尾,加上果肉的顏色像梨,所以就取名為「鳳梨」。至於英文的名稱也是因為果實的外型像毬果、而肉質香甜,所以就被取名為「松蘋果」(pineapple)啦!其實鳳梨果實的毬果狀的外觀主要是因為鳳梨是「聚合果」,每顆鳳梨是由200朵鳳梨花集合而成的!而它的學名Ananas則是來自於圖皮語,意思是很棒的水果。

在哥倫布把鳳梨引進歐洲以後,因為它的香甜好滋味讓它大受歡迎;但是身為熱帶水果的鳳梨,在溫帶的歐洲長得並不好!為了要讓王公貴族們吃到鳳梨,十六世紀的園丁們發明了「鳳梨暖爐」:把單顆鳳梨放在由馬糞堆肥做的暖床上的木製棚架,並升起爐火來保持溫暖,好讓鳳梨這熱帶植物可以在溫帶的歐洲開花結果;世界上第一個溫室就這樣誕生了,並由此開啟了歐洲建造溫室的熱潮!

鳳梨不只是改變了歐洲,在日本人到台灣後,嚐到了鳳梨的香甜滋味,便開始推動鳳梨產業。1903年,岡村庄太郎於鳳山設置岡村鳳梨工廠,生產鳳梨罐頭;後來逐漸形成中部以員林、南部以鳳山為中心的鳳梨生產體系。在1938年時,鳳梨罐頭工廠女工竟然佔了全台灣女性勞動人數三分之一以上呢!光復以後台灣的鳳梨產業也曾在1971年登上世界第一,讓台灣被稱為「鳳梨王國」。但是後來不敵其他國家的競爭,已經由外銷罐頭改為多以內銷鮮食鳳梨為主的型態了。

從清朝、日治時代直到現在,台灣的鳳梨品系一直都一樣嗎?當然不是囉!最早的鳳梨被稱為「在來種」,後來日治時代為了製作罐頭方便,從夏威夷引進了開英種;到了1980年以後,因為罐頭外銷敵不過競爭,台灣的鳳梨改為內銷且以鮮食為主,為了挽救鳳梨產業,農改場、農試所便培育出各種不同適合鮮食的鳳梨:包括不用削皮可以直接剝來吃的釋迦鳳梨(台農4號),最適合在秋冬生產的冬蜜鳳梨(台農13號),有特殊香氣的香水鳳梨(台農11號),以及因為果肉乳白色被稱為牛奶鳳梨的台農20號等…