跳到主要內容

1-氨基環丙烷-1-羧酸(ACC):新的植物賀爾蒙?

 1-aminocyclopropane-1-carboxylic acid(ACC,1-氨基環丙烷-1-羧酸)過去一向被認為是植物合成乙烯(ethylene)的前驅物。植物以甲硫胺酸(methionine)為原料,用ACC合成酶(ACC synthase)把一個四碳化合物從S-腺苷甲硫氨酸(AdoMet, SAM,S-Adenosyl methionine)切下,產生ACC與甲硫腺苷(methylthioadenosine)。然後ACC氧化酶(ACC oxidase)再將ACC氧化,產生二氧化碳、氰與水。

ACC。圖片來源:維基百科

過去在研究乙烯反應的領域裡,ACC一向被用來做為乙烯的替代品。為什麼呢?因為乙烯是氣體,所以在施放上很難定量,而ACC是粉末所以定量要容易得多,再加上ACC氧化酶的反應並不是速率限制步驟(乙烯合成的速率限制步驟在ACC合成酶),所以理論上加多少ACC就應該會有多少的乙烯產生。

這一切,都可能因為最近發表於自然通訊(Nature Communication)期刊上的一篇來自美國的研究而改變。

在這個研究裡,研究團隊使用了剔除八個基因的突變株。突變株無法合成ACC(當然也無法合成乙烯),但他們發現,原先只有剔除六個基因的突變株(這個突變株還可以合成ACC,因為還有ACC合成酶)與這剔除八個基因的突變株相比,後者的結實率(seed set)明顯較低。

深入研究發現,結實率低是因為花粉管無法被吸引到胚珠去,而且這個問題即使添加了乙烯也無法改善,但是添加了ACC以後卻明顯的改善很多。這顯示了,ACC有自己的功能,而且與乙烯不同。

為什麼花粉管無法被吸引到胚珠去呢?過去的研究發現,卵旁邊的兩個助細胞(synergid cell)會分泌稱為LURE1的多肽到珠孔,吸引花粉管往珠孔的方向生長,從而完成受精。研究團隊將五個LURE1中分泌最旺盛的LURE1.2以綠色螢光蛋白標記後發現,雖然突變株的助細胞內的LURE1.2比野生種要多,但是分泌出去的卻少了許多,而這個分泌的問題可以靠著添加ACC來解決,顯示了缺少ACC使得助細胞無法分泌LURE1.2。而以基因標記的方式也發現,兩個ACC合成酶的其中一個的確是表現在胚珠。

這些結果顯示了ACC在植物裡面擔任與乙烯不同的角色,那麼ACC在植物中是否有不同的受器呢?因為ACC在動物裡可以作為離子型谷氨酸受體(iGluRs)的不完全激動劑(partial agonist),所以研究團隊決定看看ACC是否可與植物的GLR通道(GLR channel,為植物的離子型谷氨酸受體)結合。結果發現的確是可以的,也可以引發反應。而且在胚珠中,ACC也可以刺激GLR通道,讓細胞中的鈣離子濃度上升。

到底ACC如何啟動植物,從而使植物結實,還需要更多的研究探討;但這篇報告已經告訴我們,ACC並非只是合成乙烯的原料,它自己也有賀爾蒙的功能。當然,要剔除八個基因才看得到它的功能,這樣的實驗真的也很不容易完成,未來也需要再小心地進行檢視!雖然吉貝素(GA)的種種前驅物也或多或少都有吉貝素的功能,但像ACC這樣前驅物會有完全不同功能的案例,這可能是第一個!

參考文獻:

Wangshu Mou, Yun-Ting Kao, Erwan Michard, Alexander A. Simon, Dongdong Li, Michael M. Wudick, Michael A. Lizzio, José A. Feijó, Caren Chang. Ethylene-independent signaling by the ethylene precursor ACC in Arabidopsis ovular pollen tube attraction. Nature Communications, 2020; 11 (1) DOI: 10.1038/s41467-020-17819-9

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N