跳到主要內容

分析葡萄的基因體

釀酒葡萄。圖片來源:Wiki

雖然玉米是全世界產量第一的作物,但要說最有價值的作物,葡萄絕對是當之無愧的!只要想到2017年最貴的葡萄酒價格超過台幣48萬,我想大家都會同意這句話:葡萄是最有價值的作物。全世界有八百萬公頃的土地用來種植葡萄,大部份都用來釀酒,只有少部份用來製作葡萄乾與提供鮮食。

原產於歐洲與中亞的葡萄大約在六千到八千年前於近東馴化,接著向歐洲大陸傳播;數千年來,透過雜交與無性繁殖(扦插與嫁接),全世界已有超過一萬個品系;在美國農業部(USDA)的種源庫中,也存有大約一千個品系。但是這些品系,有些是同系異名、有些只有極少的資訊。為了釐清它們之間的關係以減少混淆,同時方便未來育種選拔使用,研究團隊挑選了9,000個葡萄的單核苷酸多型性(SNP,single nucleotide polymorphism)位址組成陣列(array),用來進行全基因組關聯性(GWA,genome-wide association)分析。

美國農業部的種源庫中共有950個栽培品系葡萄(Vitis vinifera subsp. vinifera)與59個野生品系葡萄(Vitis vinifera subsp. sylvestris)。950個栽培品系葡萄中,451個為鮮食品系、469個為釀酒品系,另有30個屬於未知品系。

分析發現,在這一千多個品系中,551個可在種源庫裡找到它的複製體(clone);最誇張的一個品系(皮諾 Pinot),在種源庫中有另外16個!扣掉這些複製體,種源庫中的栽培品系葡萄只有583種;而其中有399個在種源庫中沒有重複。除了複製體之外,分析的結果也發現,74.8%的品系與至少一個品系有親緣關係;有些是親子、有些是兄弟姊妹。

栽培品系的葡萄,其基因多樣性比野生品系的葡萄低;當然這是意料中的結果,所以並不會太驚訝。西方的栽培品系葡萄與西方野生品系葡萄親緣較近,進一步確認了史料上提到的:葡萄在2,800年前傳入歐洲後,曾與歐洲本地的野生品系葡萄雜交。而傳到歐洲的栽培品系葡萄並不是西方栽培品系,而是東方栽培品系;這也在這次的分析中,發現西方栽培種並沒有與歐洲野生品系葡萄發生雜交的證據來進一步確認。

所有種源庫中的葡萄,有最多複製體的是皮諾品系;而擁有最多直系親緣關係的品系則是佔美娜(Traminer),進一步確認了它的確是個極為古老的品系。除了佔美娜以外,還有皮諾與白高維斯(Gouais Blanc)等品系也都擁有許多直系後代。

研究團隊認為,葡萄的育種到目前只開發了一小部份它的基因資源。為何葡萄這幾乎與小麥同時馴化的作物,卻只有一小部份的基因資源被開發呢?原因之一可能是因為葡萄可以無性繁殖,使得一旦找到一個具備許多受人喜愛的特質的品系出現後,由於很容易可透過大量無性繁殖來複製,因此就延緩了育種上的發展。原因之二可能是全球化造成大家會追求潮流,間接地促進種植品系愈趨單一的現象。如目前全世界最受歡迎的四大品系:霞多麗(Chardonnay)、卡本內蘇維翁(Cabernet Sauvignon)、西拉(Syrah)、梅洛(Merlot),都已經稱霸市場好一段時間了。

不過,種植品系單一化,曾在十九世紀後半造成歐洲的「葡萄瘟」--先被根瘤蚜(phylloxera)、後被真菌感染;當時若不是美洲葡萄對根瘤蚜還有一些抵抗力,恐怕整個歐洲葡萄酒產業便要一命嗚呼!但二十一世紀的葡萄藤也並不就沒有病蟲害問題,如果葡萄酒產業要永續發展,多深入瞭解、研究葡萄的基因資源是必要的。

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

Myles S. et. al., 2011. Genetic structure and domestication history of the grape. Proc. Natl. Acad. Sci. USA. DOI: www.pnas.org/cgi/doi/10.1073/pnas.1009363108

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N