跳到主要內容

榴槤(Durio zibethinus)的臭味哪裡來?

榴槤。圖片來源:Wiki

你愛吃榴槤嗎?如榴槤這等味道強烈的水果,通常愛的人就很愛、厭惡的人就很厭惡;但榴槤除了口味特別以外,果實本身還會發出強烈的氣味--或者說臭味。

因為這強烈的氣味,在許多地方的大眾交通工具與飯店都禁止旅客/房客攜帶榴槤;喜愛它的人不在乎,但討厭它的人會說聞起來像「洋蔥、松節油與臭襪子的組合」。過去的分析顯示,氣味包括了揮發性硫化物、酯、醇類與酸等。

由於榴槤是東南亞一帶重要的農產品,國立新加坡大學的研究團隊挑選了在星馬最受歡迎的榴槤品系 -- Musang King -- 進行基因體定序。

定序結果發現,榴槤的基因體大約是七億三千八百萬鹼基對(738 Mb),其中54.8%為重複序列;有四萬五千多個基因。在目前已經定序完成的植物中,榴槤與同為錦葵科(Malvaceae)的可可與棉花親緣最近;分析顯示榴槤與棉花的親緣關係較可可近,可可大約在六千兩百萬到八千五百萬年前與榴槤和棉花分道揚鑣,接著在六千萬到七千七百萬年前,榴槤與棉花各奔東西。與可可相比,榴槤的基因出現高度重複的現象:大約75%榴槤與可可都有的基因,在榴槤的基因體內出現兩個、三個甚至四個或以上。

基因重複,並不代表一定表現量就會高;尤其讓研究團隊感興趣的是那些與氣味、口味相關的基因。到底榴槤的氣味是怎麼來的呢?於是他們將不同部位榴槤組織的核醣核酸分離出來定序。定序的部位包括成熟的果實、莖、葉、根,同時也取了另外兩個品系的榴槤(Monthong 與 Puang Manee)的果實。

比較同一品系的果實與其他部位發現,成熟的果實中與硫化物、成熟、風味相關的基因表現量都上升。其中與硫化物相關的基因包括酸-硫醇連接酶(acid-thiol ligase)與甲硫胺酸代謝途徑的酵素;與成熟相關的基因包含了合成乙烯(乙烯是使果實成熟的賀爾蒙)最重要的氨基環丙烷-1-羧酸合酶(ACS,aminocyclopropane-1-carboxylic acid synthase);與風味相關的則包含了讓靈芝帶有特殊苦味的三萜化合物代謝途徑、己醛與己醇合成相關基因等。相對的,其他部位表現較高的基因則為光合作用、氮代謝相關基因等。

為了瞭解榴槤特殊的風味是否與基因表現相關,研究團隊將榴槤果實的轉錄體與其他五種水果(香蕉、芒果、鱷梨、番茄、藍莓)進行比較。結果發現:榴槤果實中合成乙烯與硫化物相關的基因表現特別高。而 Musang King 品系與其他兩種品系相比,它不論是硫化物合成、乙烯合成以及風味相關的代謝途徑基因表現量都是最高的。

特別的是,榴槤基因體中,分解甲硫胺酸所需的甲硫胺酸-γ-裂解酶(MGL,Methionine γ-lyase)竟然有四個!樹棉(G. arboreum)只有三個、而可可只有一個。MGL是揮發性硫化物合成的重要酵素,甲硫胺酸與半胱胺酸都是經過MGL的作用分解為甲基硫醇,再分解成其他的硫化物。進一步的研究發現,榴槤的MGL中,有兩個(MGLb1MGLb2)只在果實中大量表現,而這兩個MGL並不存在於棉花與可可中。

由於甲硫胺酸也是合成乙烯的原料,因此研究團隊認為:透過基因重複,榴槤有了其他植物沒有的甲硫胺酸-γ-裂解酶,並以這個酵素將部份的甲硫胺酸轉化為硫化物。

既然榴槤使用大量的甲硫胺酸來合成乙烯與硫化物,但由於土壤顆粒為帶負電的矽酸鋁,因此帶負電的硫酸根(植物主要吸收硫的形式)在土壤中並不是很容易留存;榴槤是否有什麼小撇步來提高自己吸收與保存硫的能力呢?研究團隊在榴槤的轉錄體分析中看到,有幾個與感應硫、回收硫相關的基因,在榴槤中的表現量都比其他植物要高。也就是說,因為要釋放更多的硫化物,榴槤也有相對應的機制確保自己可以吸收與保存足夠的硫。

透過基因體的研究與轉錄體的比較,對於榴槤氣味的來源有更進一步的瞭解;將來應該可以進一步研究其他榴槤屬植物的基因體,更進一步瞭解這種「刺果」(榴槤的英文名durian是源自馬來語,原意就是「刺」duri)。雖然大家最熟悉的是 D. zibethinus,但在產地至少還有八種不同的榴槤屬植物也出產可食的果實、有些甚至因為開發與人為採摘已經出現滅絕危機,希望透過更多榴槤的研究,未來可以有品質更好的榴槤出產,也可為野生榴槤的保存略盡心力!

參考文獻:

Bin Tean Teh et. al., The draft genome of tropical fruit durian (Durio zibethinus). Nature Genetics 49, 1633–1641 (2017) doi:10.1038/ng.3972

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

光合作用的循環電子傳遞(cyclic electron flow)的調節

  圖片來源:維基百科 光合作用(photosynthesis)分為光反應(light reaction)與碳反應(Calvin-Benson cycle)。其中光反應為將陽光的光能轉換為化學能(ATP)與電子(NADPH)的過程。光能由光系統I或光系統II接收並轉換為電子進行傳遞,傳遞的過程中部分的能量被細胞色素b6f複合體(cytochrome b6f complex)擷取,提供植物將氫離子(H + ,proton)由葉綠體的基質(stroma)運輸到類囊體腔(thylakoid lumen)中,製造氫離子梯度(proton gradient),以提供ATP合成酶(ATP synthase)用來合成ATP;電子本身最後被傳送給NADP,產生NADPH用來在碳反應中做為還原電子使用。 上述的過程(稱為線性電子傳遞linear electron flow)並非光反應唯一會進行的反應。除了線性電子傳遞,植物也會進行所謂的循環電子傳遞(cyclic electron flow):電子在由光系統II→細胞色素b6f複合體 →光系統I之後,不將電子運送給Fd-NADP + 還原酶來產生NADPH,而是將電子送給一個Fd-PQ還原酶。由於接著Fd-PQ還原酶會把電子交還給細胞色素b6f複合體,所以被稱為循環電子傳遞。 循環電子傳遞到底有什麼樣的功能,目前還沒有定論。有些科學家認為植物用它來調節能量(ATP)與電子(NADPH)的產生比率,也有些科學家認為循環電子傳遞有保護植物免於被過量光能傷害的功能。不管怎麼說,近年來的研究卻發現了幾個基因與循環電子傳遞的調節有關。 第一個被發現的基因是 PGR5 (PGR=protein gradient)。缺少 PGR5 的阿拉伯芥無法形成氫離子梯度,也就是說 PGR5 為光反應所必須。但是 PGR5 長得一點都不像電子運輸蛋白,這就引起了科學家們的興趣。 後續的研究發現了另一個基因稱為 PGRL1 (PGR5-like 1)。研究團隊發現,缺少 PGRL1 會造成 PGR5 不穩定,但缺少 PGR5 並不會影響 PGRL1 的穩定性。 最近又發現了另一個基因 PGRL2 。研究團隊發現,缺少 PGRL2 對光合作用沒有影響,但是在植物中過量表現 PGRL2 會使 PGR5 的穩定性下降。同時缺少 PGRL2 與 PGRL1 的植...

吃太多光果甘草(liquorice)會有不良作用

  光果甘草。圖片來源: 維基百科 。 光果甘草(liquorice, Glycyrrhiza glabra )又稱為洋甘草,為豆科甘草屬下的一個種,在中國、西亞與南歐都有分布。一般人們會取它的根來製作糖果,在歐美蠻受歡迎的。英文名稱liqurice來自於希臘文的 glycyrrhiza ,意思就是「甜的根」:「 glukus 」意為「甜」,「 rhiza 」意為「根」。它也是中藥甘草的一種,乾燥的根及根莖性味偏涼,加工(蜜炙)後則性味偏溫,各有不同功效。 光果甘草除了可以用來製作糖果,也用於傳統醫學與草藥學。但是光果甘草含有甘草酸(Glycyrrhizin 或 glycyrrhizic acid),如每日每公斤體重服用超過2毫克(2 mg/kg/day)可導致低血鉀、血壓上升、肌肉無力等症狀。 最近發表在《新英格蘭醫學雜誌》上的 一篇文章 提到,一位54歲的建築工人,因為每天吃一包半的光果甘草糖,連吃了幾個星期,結果死於突發的心臟驟停(cardiac arrest)。 醫師認為他的死亡與甘草酸有關。甘草酸是一種皂素(saponin),屬於植物的次級代謝物,由一分子的甘草次酸(glycyrrhetinic acid)與兩分子的葡萄糖醛酸(Glucuronic acid)組成。 甘草糖。圖片來源: 維基百科 。 雖然醫師認為他的死亡與食用大量的甘草糖脫不了關係,但醫師也注意到死者的飲食並不健康。他一向吃很多糖,只是最近幾週改吃甘草糖。 光果甘草與中藥的甘草( G. uralensis )是近親,兩者同屬不同種。中藥的甘草也含有甘草酸,幸好華人文化裡並沒有把甘草做成糖果的習慣,所以應該不會發生甘草酸中毒的情形。 補充:2020/10/10發現了一個影片,裡面提到這個病例以及甘草酸致死的機轉:因為甘草酸的結構跟皮質醇(cortisol)很像,所以會引發類似的效應。 影片裡面提到,現在在美國要買到真的liquorice其實並不容易,大部分都是人工甘味...所以這位仁兄真的很厲害可以買到真的liquorice。 2022/04/07:最近有一篇研究報告提到,甘草酸與甘草次酸有抗癌的活性,而且還能抑制SARS-CoV2的複製。看起來很有趣,但考慮到甘草酸與甘草次酸的毒性,似乎還是要小心使用比較好。 參考文獻: Case 30-2020: A 54-Year-Old ...