跳到主要內容

葉綠體網絡幫助植物抵抗外敵

葉綠體的基質絲(stromules)。圖片來源:JEB
就如粒線體(mitocondria)一樣,植物細胞中的葉綠體(chloroplast)也並非是一顆顆互不相連的。早在1944年便已經發現,葉綠體之間存在著稱為基質絲(stromules)的構造。過去觀察到基質絲在植物的根部與真菌共生時、澱粉粒形成時、以及生物或非生物性的壓力出現時都會產生,但究竟基質絲的功能為何?科學家們曾經發現植物質體(plastids,包括葉綠體等所有植物的半自律胞器的總稱)之間似乎可以透過基質絲進行物質交換,但這被認為並非基質絲的主要功能。

最近,加大戴維斯分校(University of California,Davis)的研究團隊發現,原來葉綠體的基質絲,在植物細胞被病菌或病毒入侵時,可以通風報信,將自己產生的過氧化氫等前凋亡信號(pro-PCD signal)送到細胞核,而包括過氧化氫(H2O2)與水楊酸(salicylic acid,SA),都會引發葉綠體產生更多的基質絲。

當植物受到病原體(病菌/病毒)入侵時,通常會產生所謂的HR反應(Hypersensitive response)。HR反應指得是在病灶周圍的細胞全部死亡的現象,如此一來,由於病原體無法感染死亡的細胞,也就無法繼續感染更多的植物組織(楚留香說:死人是不會說話的。筆者曰:死細胞是無法被感染的。)。HR反應中的細胞死亡,類似於動物細胞中的細胞凋亡,但在植物中的細胞凋亡稱為PCD(programmed cell death),且並非如動物由粒線體啟動,而是由葉綠體啟動的。

植物的葉綠體在病原入侵時,會產生包括過氧化氫、水楊酸、一氧化氮以及超氧化物(O2-)。除了葉綠體以外,植物的細胞膜也會產生自由基(過氧化氫與超氧化物)。不過,葉綠體在植物的PCD中似乎是擔任了主要的角色。

因此,研究團隊對於葉綠體的基質絲,究竟是否在植物的HR反應中擔任一角產生了興趣。於是,他們將病菌或病毒的蛋白在植物細胞中表現,發現不論是病菌或病毒的蛋白,都可以引發基質絲的產生。

由於這些病原體的蛋白質會引發植物細胞產生前凋亡信號,於是研究團隊進一步測試,在沒有這些蛋白時,若只是加入過氧化氫或水楊酸時,是否會引發基質絲的產生?結果是,只要加入過氧化氫或水楊酸,葉綠體們就會產生基質絲。

顯微鏡下的觀察發現,在病原體蛋白或前凋亡信號存在時,葉綠體所產生的大量的基質絲圍繞著細胞核;甚至可以觀察到葉綠體團團圍住細胞核的狀況。不過,雖然細胞核周圍被葉綠體或基質絲包圍,但似乎並沒有發生核膜與葉綠體外膜融合的現象,細胞核與葉綠體可能只是藉著細胞骨架來進行互動。研究團隊同時也觀察到,葉綠體會將產生的過氧化氫經由基質絲運送到細胞核中。

有意思的是,當研究團隊把位於葉綠體外膜的蛋白質CHUP1基因剔除後,chup1突變株的葉綠體不斷地產生基質絲,而且它的PCD也增強了。

整體看來,葉綠體在植物細胞受到外敵入侵時,似乎擔任了通風報信者的角色。葉綠體先產生了前凋亡信號後,接著將這個信號(經由基質絲)傳送給細胞核,然後細胞核與葉綠體之間產生了一個正回饋的循環,使葉綠體產生更多的過氧化氫與水楊酸,最後使細胞走向死亡一途。但是中間還有太多的未知:例如CHUP蛋白究竟擔任什麼角色?以及另一個葉綠體蛋白NRIP1,在植物啟動HR反應時,它會出現在細胞核中,它的角色又是什麼?這些都需要後續的研究釐清。

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

Caplan et al., Chloroplast Stromules Function during Innate Immunity, Developmental Cell (2015), http://dx.doi.org/ 10.1016/j.devcel.2015.05.011

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

光合作用的循環電子傳遞(cyclic electron flow)的調節

  圖片來源:維基百科 光合作用(photosynthesis)分為光反應(light reaction)與碳反應(Calvin-Benson cycle)。其中光反應為將陽光的光能轉換為化學能(ATP)與電子(NADPH)的過程。光能由光系統I或光系統II接收並轉換為電子進行傳遞,傳遞的過程中部分的能量被細胞色素b6f複合體(cytochrome b6f complex)擷取,提供植物將氫離子(H + ,proton)由葉綠體的基質(stroma)運輸到類囊體腔(thylakoid lumen)中,製造氫離子梯度(proton gradient),以提供ATP合成酶(ATP synthase)用來合成ATP;電子本身最後被傳送給NADP,產生NADPH用來在碳反應中做為還原電子使用。 上述的過程(稱為線性電子傳遞linear electron flow)並非光反應唯一會進行的反應。除了線性電子傳遞,植物也會進行所謂的循環電子傳遞(cyclic electron flow):電子在由光系統II→細胞色素b6f複合體 →光系統I之後,不將電子運送給Fd-NADP + 還原酶來產生NADPH,而是將電子送給一個Fd-PQ還原酶。由於接著Fd-PQ還原酶會把電子交還給細胞色素b6f複合體,所以被稱為循環電子傳遞。 循環電子傳遞到底有什麼樣的功能,目前還沒有定論。有些科學家認為植物用它來調節能量(ATP)與電子(NADPH)的產生比率,也有些科學家認為循環電子傳遞有保護植物免於被過量光能傷害的功能。不管怎麼說,近年來的研究卻發現了幾個基因與循環電子傳遞的調節有關。 第一個被發現的基因是 PGR5 (PGR=protein gradient)。缺少 PGR5 的阿拉伯芥無法形成氫離子梯度,也就是說 PGR5 為光反應所必須。但是 PGR5 長得一點都不像電子運輸蛋白,這就引起了科學家們的興趣。 後續的研究發現了另一個基因稱為 PGRL1 (PGR5-like 1)。研究團隊發現,缺少 PGRL1 會造成 PGR5 不穩定,但缺少 PGR5 並不會影響 PGRL1 的穩定性。 最近又發現了另一個基因 PGRL2 。研究團隊發現,缺少 PGRL2 對光合作用沒有影響,但是在植物中過量表現 PGRL2 會使 PGR5 的穩定性下降。同時缺少 PGRL2 與 PGRL1 的植...