跳到主要內容

細胞壁(cell wall)的合成很複雜!很複雜!很複雜!

最近這些年,生質燃料(biofuel)是個熱門的話題;但是用什麼當原料,對於世界會有不同的影響。

怎麼說呢?最容易的,是使用甘蔗的蔗糖或玉米澱粉來發酵產生酒精,但是這類的燃料卻不免有「與人爭食」的疑慮。發生在2008年的全球糧食危機,就跟美國把一部份的玉米投入生質燃料的製作有關。

其次是使用動物或植物油脂(亞麻油、大豆油、椰子油等)製作的生質柴油。同樣的,這也有「與人爭食」的疑慮。

不論是使用澱粉/蔗糖為原料的酒精,或是使用動植物油脂的生質柴油,除了與人爭食的問題之外,另外一個問題是:若不要與人爭食,便需為了種植這些作物將更多的森林/草原改為農田;如此一來地球生態又會被改變,而大量開墾往往涉及燒荒,也會產生大量的二氧化碳與霧霾等等...

最環保的原料可能就是利用落葉、廢木、舊衣、廢紙等的纖維素,經過分解、發酵產生酒精了。由於這些原料原本就是廢棄物,也不需要為了取得他們而開墾森林與草原,當然也不會有燒荒的行為發生。

可是,說來簡單,做來卻不容易。怎麼說呢?原來,植物的細胞壁主要由三種成分組成:纖維素(cellulose),它是由β-葡萄糖所組成的長鏈;半纖維素(hemicellulose),它由木糖(xylose)、甘露糖(mannose)、葡萄糖以及半乳糖(galactose)所組成的分支狀結構;以及木質素(lignin)。其中的纖維素與半纖維素分解後都可以發酵為酒精,但是木質素不但無法發酵成為酒精,它也會成為纖維素與半纖維素分解時的重大障礙。

半纖維素。圖片來源:wiki

那麼,是否可以讓植物不要合成木質素呢?答案是:很難。木質素在植物次生細胞壁(secondary cell wall)時一起形成,主要的功能是幫助植物細胞壁的強度增加;同樣的,植物的導管(xylem)也需要木質素來提升強度,以免在輸送水分時導管因水快速流動所產生的負壓而崩塌。

木質素是一群奇妙的分子。它主要由三個單體(monomer)構成:

木質素的三個單體。1:paracoumaryl alcohol,
2: coniferyl alcohol, 3:sinapyl alcohol。圖片來源:wiki
這三個單體,彼此之間形成複雜的交聯鍵(crosslink)。這些交聯鍵如此複雜,使得木質素沒有固定的構造。

雖然不可能有不含木質素的植物,但如果對植物的細胞壁合成有足夠的了解,或許可以降低木質素的合成;也就是基於這樣的想法,麻州大學(University of Massachusetts)與加大戴維斯分校(University of California, Davis)的研究團隊,將過去累積的微陣列(microarray)資料以及許多期刊論文上與導管特化相關的基因調控彙整在一起。

從這些資料裡面,研究團隊找到50個與導管特化相關的基因(導管的形成需要纖維素、木質素與半纖維素),有些是轉錄調節因子(transcription factor),有些是酵素。接著,研究團隊以增強的酵母單雜交(enhanced yease one-hybrid)找出與導管特化相關的轉錄調節因子的啟動子(promoter),找到了45個。

最後的結果,總共有242個基因與導管特化相關的基因,他們彼此之間產生的互動有617種,其中的601種互動,是過去未曾發現的。

雖然這601種互動裡面可能會有一些不是有意義的互動,而是測試系統本身所產生的偽陽性;但是,這些資料提供了對想要開發適當材料做為纖維酒精的研究者一個好的資源。

雖然在我們的眼中,細胞壁只是無生命的物質;但對植物來說,是細胞壁使他們可以抵禦外敵的入侵、可以向上取得更多的光線、可以抗旱...仔細想想,細胞壁的合成與合成的調控機制這麼複雜,好像也不太意外了!

參考資料:

M. Taylor-Teeples, L. Lin, M. de Lucas, G. Turco, T. W. Toal, A. Gaudinier, N. F. Young, G. M. Trabucco, M. T. Veling, R. Lamothe, P. P. Handakumbura, G. Xiong, C. Wang, J. Corwin, A. Tsoukalas, L. Zhang, D. Ware, M. Pauly, D. J. Kliebenstein, K. Dehesh, I. Tagkopoulos, G. Breton, J. L. Pruneda-Paz, S. E. Ahnert, S. A. Kay, S. P. Hazen, S. M. Brady. 2014. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature. DOI: 10.1038/nature14099

Siobhan M. Brady, David A. Orlando, Ji-Young Lee, Jean Y. Wang, Jeremy Koch, José R. Dinneny, Daniel Mace, Uwe Ohler, and Philip N. Benfey. 2007. A High-Resolution Root Spatiotemporal Map Reveals Dominant Expression Patterns. Science  318(5851): 801-806. [DOI:10.1126/science.1146265]

留言

這個網誌中的熱門文章

為什麼「種豆南山下,草盛豆苗稀」?

陶淵明在「歸園田居」詩中,曾經提到「種豆南山下,草盛豆苗稀」。這首詩大家都很熟了,也是很受歡迎的國文教材,但是,有多少人認真去想為什麼「草盛豆苗稀」呢?難道只是因為陶淵明不會種田嗎?

雖然根據歷史的記載,「歸園田居」可能真的就是在他剛隱居的時候寫的(1);而在那時候,可能他的耕種技術也的確是還有待提升;不過筆者卻認為,從生物學的角度來看,「草盛豆苗稀」也不全是耕種技術的問題。

首先,我們來看一下氣候。陶淵明隱居的地點在潯陽柴桑,也就是現在的江西省九江市星子縣。當地是北緯29.44度,在北回歸線以北,屬於濕潤型亞熱帶氣候(2),1971-2000的年平均溫度為攝氏17.03度,每年四月就不再有攝氏零度以下的低溫(3)。雖然還是比臺灣偏北(台北市是北緯25.02度),大致上還是屬於溫和的氣候,植物的種類應該也不會相差太多。即使考慮近年來全球暖化的問題,應該也不會超過攝氏一度(4)。

在亞熱帶的台灣,夏天通常並不是植物茂盛生長的時期。為什麼呢?因為世界上90%的陸生植物是C3植物,這些植物在氣溫超過攝氏30度時,會因為光呼吸作用(photorespiration)造成水分的消耗大量上昇。C3植物(如大豆)在攝氏30度時,每抓一個二氧化碳分子就要消耗833個水(5),於是植物的生長速度就開始變慢。

不過,並不是所有的植物在夏天時生長速度都會變慢唷!有些植物,如玉米、甘蔗等,反而在夏天時長得特別好。為什麼呢?

原來玉米與甘蔗是所謂的C4植物,它們既耐熱又耐旱,跟C3植物比較起來,在攝氏30度時C4植物每抓一個二氧化碳的分子只消耗277個水(5),所以夏天的時候,它們的生長速度ㄧ點都不受影響呢!
說到這裡,讀者可能會想:什麼是C4植物?為什麼它們能夠既耐熱又耐旱呢?
所謂的C3、C4植物,指得是它們在光合作用上的不同。C3植物進行光合作用時,是由卡爾文循環(Calvin cycle)的酵素(RuBisCo,如圖二)直接抓取溶解在細胞中的二氧化碳,與核酮糖1,5-二磷酸(ribulose 1,5-bisphosphate,RuBP)進行反應;


而C4植物則在卡爾文循環上面,又增加了幾個步驟,而且這幾個步驟還跟卡爾文循環在不同的組織中進行呢(如圖三)!為什麼會這樣呢?


原來,C4植物多半都生活在亞熱帶或熱帶,在這些氣候區,植物進行光合作用時,會遇到一個大問題。

這個問題來自於卡爾文循環的第…

【原來作物有故事】麵包樹 熱帶果實引發電影傳奇

第一次聽到麵包樹的名字,是在小學的校園裡。當時老師說麵包樹雖然果實真的長得像麵包,但因為台北太冷了,原生於熱帶的它沒辦法在台北開花結果。

後來在花蓮當老師時,發現學校餐廳夏天有時會出現一種特別的蔬菜湯:裡面有黃色果肉、白色種子的「菜」。在地的同事告訴我,那叫做「巴吉魯」,也就是麵包樹的果實。

花蓮的夏天總是不缺「巴吉魯」,不只市場裡有賣、有些人家的院子裡就有麵包樹。在地的朋友說,成熟的果實削皮切塊加點小魚乾煮湯很好喝,長不大的果實(雄花花序)用來燃燒驅蚊,據說比蚊香還有效。

麵包樹是桑科波羅密屬的多年生大型喬木,花為單性花,雌雄同株;果實是由30-68朵雌花所形成的多花果。麵包果通常在採收後五天到一週內食用最好吃,如果冷藏可以保存二到三週。

目前的研究認為麵包樹源自大洋洲新幾內亞、馬來半島、與西密克羅尼西亞。台灣的麵包樹原生於蘭嶼。在蘭嶼,麵包樹稱為“chipogo”,達悟族人用於製作船首、船尾板、坐墊,及住屋用的宗柱、主屋之踏腳板與木笠、木盤等用具,而分泌的乳白色汁液具黏性,可以當作粘接劑。

達悟族較少食用麵包果,倒是台灣東部的阿美族與太魯閣族經常拿麵包果來吃;不過太平洋群島上最常見的吃法應該是將麵包果放在鋪了葉片的坑洞內發酵成可以放二、三年的「果醬」。由於太平洋群島夏季常有颱風,這些「果醬」對各地原住民們是颱風後很重要的緊急糧食。既然麵包樹這麼重要,「南島語族」(包括台灣的原住民)不論坐船到哪裡,總是帶著麵包樹的種子。所以,麵包樹在太平洋各群島上是常見的風景。

第一個看到麵包樹的歐洲人應該是十六世紀末到十七世紀初的葡萄牙航海家佩得羅‧費爾南德斯‧德‧基羅斯。比他晚將近一百年的英國航海家威廉‧丹皮爾船長,他提到麵包樹的果實可以烤來吃。

到了十八世紀,麵包樹突然搖身一變成了「神奇糧食」。到底發生了什麼事呢?原來在1769年與庫克船長乘「奮進號」的英國植物學家班克斯爵士在大溪地看到了麵包樹,因為麵包樹的果實約有四分之一為澱粉、在熱帶地區又長得很好,使班克斯認為麵包樹可能是解決英國在牙買加殖民地奴隸營養問題的解答。於是在1787年,英國皇家科學院派遣邦迪號前往大溪地收集麵包樹帶到加勒比海群島種植。為了這個目的,船上還有一位隨船的植物學家大衛‧尼爾森。

原訂於8月16日出發的邦迪號,因為一連串的延遲,最後終於到了大溪地、收集了足夠數量的麵包樹以後,卻在因為船長布萊一路…

通風報信的植物

植物受傷時會有什麼反應?過去的研究讓我們瞭解,當植物被攻擊(受到病原菌感染、受傷)時,會釋放出揮發性有機物質(VOCs,Volatile Organic Compounds),讓自己以及附近的植物啟動防禦機制。這個作用有點像古代的烽火臺,當敵人來襲就燒起狼煙,附近的人看到狼煙就知道這裡出事了,要加強戒備。

不過,當附近的植物感應到VOCs時,它們會如何加強自己的防禦機制呢?過去的實驗發現,當植物的地上部位受到病原菌感染時,會傳遞信號給自己的根,接著根部的鋁活化蘋果酸運輸蛋白(ALMT1,aluminum-activated malate transporter)便會活化後釋放蘋果酸(malate)到土壤中來召喚枯草桿菌 UD1022(Bacillus subtilis UD1022)這隻植物的益菌。這些現象是否不僅僅發生在苦主、也發生在附近的植物身上呢?

康納(Connor Sweeney)和他在德拉瓦大學的指導教授,最近發現:不只是受傷的植物本身會進行這些防禦機制、附近的植物也會呢!

康納是德拉瓦州(Delaware)的高中生。他因為對科學有興趣,寫了e-mail給德拉瓦大學(University of Delaware)的白斯教授(Harsh Bais),表達希望能進他的實驗室學習。當白斯老師回信說「OK」的時候,康納高興得不得了。

於是他就開始了他的實驗室生活:下課後、週末以及暑假,康納都在白斯老師的實驗室裡種阿拉伯芥(Arabidopsis thaliana)。雖然他也是高中的游泳校隊,但他盡可能地投入時間作實驗。

成果是豐碩的。兩年後,康納在白斯教授的指導下,解出了植物接到鄰居的「狼煙」以後,接下來做了什麼;他們的成果發表在2017年的「植物科學前鋒」(Frontier in Plant Science)期刊上。

以一個高中生來說,這可是個非同小可的成就;康納不只是付出了許多努力,他也細心觀察每一個實驗。因為他夠細心,所以才沒有錯失了重要的發現。

這個重要的發現是什麼呢?有一天他如常地進行實驗:把一株阿拉伯芥用鑷子弄了幾個傷口,準備明天觀察它的反應。不同的是,這次旁邊有一株阿拉伯芥沒有被他弄傷。

第二天他看到了令他不敢相信的結果:旁邊的阿拉伯芥的主根變長、而且還長出了不少側根。

於是他們做了更多測試。他們發現:旁邊有受傷的伙伴的小芥們,主根生長的速度大約…