跳到主要內容

農桿菌(Agrobacterium tumefaciens)的不確定性

現在作植物的轉殖,幾乎都是用農桿菌了。這個格蘭氏陰性(Gram negative)桿菌,原本是農作物的病菌,會導致植物產生腫瘤(crown gall);雖然植物的腫瘤不會轉移也沒有致命的風險,卻會使植物生產的養分,因為要供應給腫瘤而造成產量減少。

農桿菌所產生的腫瘤。圖片來源:wiki
農桿菌所造成的危害,最早是在葡萄裡面發現;後來慢慢發現它其實可以危害許多植物,不過在自然界中以雙子葉植物居多。農桿菌自己帶了一個質體,稱為Ti質體。這個Ti質體,在農桿菌感染植物時,其中有一段DNA會插入植物的基因體中。

這段DNA(稱為T-DNA)裡面帶有合成兩種植物賀爾蒙所需的酵素基因,進入植物基因體後,便會使得該植物細胞開始大量產生生長素(auxin)與細胞分裂素(cytokinin)。這兩種賀爾蒙相加的結果,會使得細胞開始分裂增生,於是就產生腫瘤了。當然,T-DNA中還有其他的基因,會驅使植物細胞合成農桿菌所需要的養分,包括了小分子氨基酸與磷酸化的糖類等,這樣農桿菌在腫瘤中才能生長壯大。

原本研究農桿菌是為了要打敗它,但是科學家在研究的過程中發現,這隻細菌非常的有意思。原來,農桿菌在將T-DNA轉入植物基因體時,根本不管裡面有什麼、也不管有多長(當然,太長了效率會降低),它只認這段DNA的兩邊邊界(稱為左右邊界),然後就一股腦地將左右邊界之間的DNA給塞進植物裡面了。

農桿菌的轉殖原理。左邊是農桿菌,右邊是植物細胞;
C為Ti質體,載體中的a為T-DNA。圖片來源:wiki
這樣有意思的轉殖過程,就讓科學家們想到,如果可以把T-DNA用自己想要放進植物裡面的基因給取代,是不是就可以把「任何基因」都給它放進去了呢?

理論上是這樣,不過因為Ti質體實在是太大了(大約200kb以上),造成在實驗室裡面的操作很困難。這個障礙,直到1983年 Hoekema 以及de Frammond這兩個研究團隊發現,可以把Ti質體一分為二之後,農桿菌才成為研究植物的人的心頭寶。

從此以後,農桿菌開始被大量用在製作轉基因植物上;原本是雙子葉植物的病原菌的它,經過研究團隊悉心調製配方以後,它現在已經可以說是少有敵手。跟基因槍相比,又不用買很貴的儀器、也不需要買金粉或鎢粉;只要把質體做好,塞到農桿菌裡面,養個一堆以後,把要轉的組織泡在裡面若干時間,就大功告成了!它能夠成為植物研究者的心頭寶,真的不是蓋的!

但是,它還是有一些限制。過去的研究發現,由於農桿菌只需要在植物基因體上找到很小一段序列相似,就可以進行轉殖;於是幾乎可以說,農桿菌在植物基因體中的「任何地方」都可以把T-DNA塞進去。這樣雖然很方便,但也有麻煩。有時它會破壞基因,造成植物產生一些特殊的性狀。

當然,那樣的基改植物,就不能使用了;雖然它還可以有其他的用途。不過,有另外一個疑問是:農桿菌真的有那麼「乖」,就只會把左右邊界之間的DNA塞進植物裡面而已嗎?

這個疑問,如果問早期研究植物的科學家,可能會被嗤之以鼻;他們會告訴你,當然!不過這個當然,在1990年代已經被打破了。

在1992年12月2日,當加基公司(Calgene Inc)正在為了它們的莎弗番茄(Flavr Savr Tomato)申請上市忙得天翻地覆時,收到了食品藥物管理局的來函,希望他們澄清一件事:是否真的只有T-DNA的序列嵌入番茄中?

原本加基公司也認為食品藥物管理局未免多此一問,但等到南方墨點試驗(Southern Blot)出爐,他們很驚訝地發現:約有20%-30%的農桿菌載體序列也出現在植物中(1)。於是他們只得將這些含有農桿菌載體序列的番茄剔除。

後來,Neal Gutterson等人也發現,農桿菌的載體序列的確會出現在基改植物中;而且比例高於加基公司所做出來的結果(50%~80%)。不過,Gutterson的研究團隊,後來便在載體中放了一個致死基因,只要轉殖過程中把包含了致死基因的載體序列放進去了,植物便會死亡(2)。

看起來似乎額外的序列加入植物的問題解決了,但筆者過去的經驗發現,農桿菌有時會只嵌入短短的序列(只有幾個或十幾個鹼基對),這短短的序列,如果插入基因中,仍足以破壞蛋白質的產生,或是打亂基因的表現;可是這樣短的序列,卻無法以南方墨點試驗鑑定,嵌入致死基因也無法預防這樣的事情發生...所以,究竟農桿菌用來轉殖,是否真的是安全的?除卻定序整個基因體(需要相當高的經費)之外,通常都是由檢驗外觀性狀以及基改植物各大小分子的表現量是否異於原植物而已。

所以,是否安全呢?筆者也沒有答案,您呢?

(台大科教中心擁有此文版權,其他單位需經同意始可轉載。)

參考文獻:

1. Belinda Martineau. 番茄一號-全球第一個上市基改食品「莎弗番茄」的起與落。遠流出版。

2. Bill Hanson, Dean Engler, York Moy, Bob Newman, Ed Ralston and Neal Gutterson. 1999. A simple method to enrich an Agrobacterium-transformed population for plants containing only T-DNA sequences. The Plant Journal. 19(6):727–734.

留言

這個網誌中的熱門文章

為什麼「種豆南山下,草盛豆苗稀」?

陶淵明在「歸園田居」詩中,曾經提到「種豆南山下,草盛豆苗稀」。這首詩大家都很熟了,也是很受歡迎的國文教材,但是,有多少人認真去想為什麼「草盛豆苗稀」呢?難道只是因為陶淵明不會種田嗎?

雖然根據歷史的記載,「歸園田居」可能真的就是在他剛隱居的時候寫的(1);而在那時候,可能他的耕種技術也的確是還有待提升;不過筆者卻認為,從生物學的角度來看,「草盛豆苗稀」也不全是耕種技術的問題。

首先,我們來看一下氣候。陶淵明隱居的地點在潯陽柴桑,也就是現在的江西省九江市星子縣。當地是北緯29.44度,在北回歸線以北,屬於濕潤型亞熱帶氣候(2),1971-2000的年平均溫度為攝氏17.03度,每年四月就不再有攝氏零度以下的低溫(3)。雖然還是比臺灣偏北(台北市是北緯25.02度),大致上還是屬於溫和的氣候,植物的種類應該也不會相差太多。即使考慮近年來全球暖化的問題,應該也不會超過攝氏一度(4)。

在亞熱帶的台灣,夏天通常並不是植物茂盛生長的時期。為什麼呢?因為世界上90%的陸生植物是C3植物,這些植物在氣溫超過攝氏30度時,會因為光呼吸作用(photorespiration)造成水分的消耗大量上昇。C3植物(如大豆)在攝氏30度時,每抓一個二氧化碳分子就要消耗833個水(5),於是植物的生長速度就開始變慢。

不過,並不是所有的植物在夏天時生長速度都會變慢唷!有些植物,如玉米、甘蔗等,反而在夏天時長得特別好。為什麼呢?

原來玉米與甘蔗是所謂的C4植物,它們既耐熱又耐旱,跟C3植物比較起來,在攝氏30度時C4植物每抓一個二氧化碳的分子只消耗277個水(5),所以夏天的時候,它們的生長速度ㄧ點都不受影響呢!
說到這裡,讀者可能會想:什麼是C4植物?為什麼它們能夠既耐熱又耐旱呢?
所謂的C3、C4植物,指得是它們在光合作用上的不同。C3植物進行光合作用時,是由卡爾文循環(Calvin cycle)的酵素(RuBisCo,如圖二)直接抓取溶解在細胞中的二氧化碳,與核酮糖1,5-二磷酸(ribulose 1,5-bisphosphate,RuBP)進行反應;


而C4植物則在卡爾文循環上面,又增加了幾個步驟,而且這幾個步驟還跟卡爾文循環在不同的組織中進行呢(如圖三)!為什麼會這樣呢?


原來,C4植物多半都生活在亞熱帶或熱帶,在這些氣候區,植物進行光合作用時,會遇到一個大問題。

這個問題來自於卡爾文循環的第…

【原來作物有故事】麵包樹 熱帶果實引發電影傳奇

第一次聽到麵包樹的名字,是在小學的校園裡。當時老師說麵包樹雖然果實真的長得像麵包,但因為台北太冷了,原生於熱帶的它沒辦法在台北開花結果。

後來在花蓮當老師時,發現學校餐廳夏天有時會出現一種特別的蔬菜湯:裡面有黃色果肉、白色種子的「菜」。在地的同事告訴我,那叫做「巴吉魯」,也就是麵包樹的果實。

花蓮的夏天總是不缺「巴吉魯」,不只市場裡有賣、有些人家的院子裡就有麵包樹。在地的朋友說,成熟的果實削皮切塊加點小魚乾煮湯很好喝,長不大的果實(雄花花序)用來燃燒驅蚊,據說比蚊香還有效。

麵包樹是桑科波羅密屬的多年生大型喬木,花為單性花,雌雄同株;果實是由30-68朵雌花所形成的多花果。麵包果通常在採收後五天到一週內食用最好吃,如果冷藏可以保存二到三週。

目前的研究認為麵包樹源自大洋洲新幾內亞、馬來半島、與西密克羅尼西亞。台灣的麵包樹原生於蘭嶼。在蘭嶼,麵包樹稱為“chipogo”,達悟族人用於製作船首、船尾板、坐墊,及住屋用的宗柱、主屋之踏腳板與木笠、木盤等用具,而分泌的乳白色汁液具黏性,可以當作粘接劑。

達悟族較少食用麵包果,倒是台灣東部的阿美族與太魯閣族經常拿麵包果來吃;不過太平洋群島上最常見的吃法應該是將麵包果放在鋪了葉片的坑洞內發酵成可以放二、三年的「果醬」。由於太平洋群島夏季常有颱風,這些「果醬」對各地原住民們是颱風後很重要的緊急糧食。既然麵包樹這麼重要,「南島語族」(包括台灣的原住民)不論坐船到哪裡,總是帶著麵包樹的種子。所以,麵包樹在太平洋各群島上是常見的風景。

第一個看到麵包樹的歐洲人應該是十六世紀末到十七世紀初的葡萄牙航海家佩得羅‧費爾南德斯‧德‧基羅斯。比他晚將近一百年的英國航海家威廉‧丹皮爾船長,他提到麵包樹的果實可以烤來吃。

到了十八世紀,麵包樹突然搖身一變成了「神奇糧食」。到底發生了什麼事呢?原來在1769年與庫克船長乘「奮進號」的英國植物學家班克斯爵士在大溪地看到了麵包樹,因為麵包樹的果實約有四分之一為澱粉、在熱帶地區又長得很好,使班克斯認為麵包樹可能是解決英國在牙買加殖民地奴隸營養問題的解答。於是在1787年,英國皇家科學院派遣邦迪號前往大溪地收集麵包樹帶到加勒比海群島種植。為了這個目的,船上還有一位隨船的植物學家大衛‧尼爾森。

原訂於8月16日出發的邦迪號,因為一連串的延遲,最後終於到了大溪地、收集了足夠數量的麵包樹以後,卻在因為船長布萊一路…

通風報信的植物

植物受傷時會有什麼反應?過去的研究讓我們瞭解,當植物被攻擊(受到病原菌感染、受傷)時,會釋放出揮發性有機物質(VOCs,Volatile Organic Compounds),讓自己以及附近的植物啟動防禦機制。這個作用有點像古代的烽火臺,當敵人來襲就燒起狼煙,附近的人看到狼煙就知道這裡出事了,要加強戒備。

不過,當附近的植物感應到VOCs時,它們會如何加強自己的防禦機制呢?過去的實驗發現,當植物的地上部位受到病原菌感染時,會傳遞信號給自己的根,接著根部的鋁活化蘋果酸運輸蛋白(ALMT1,aluminum-activated malate transporter)便會活化後釋放蘋果酸(malate)到土壤中來召喚枯草桿菌 UD1022(Bacillus subtilis UD1022)這隻植物的益菌。這些現象是否不僅僅發生在苦主、也發生在附近的植物身上呢?

康納(Connor Sweeney)和他在德拉瓦大學的指導教授,最近發現:不只是受傷的植物本身會進行這些防禦機制、附近的植物也會呢!

康納是德拉瓦州(Delaware)的高中生。他因為對科學有興趣,寫了e-mail給德拉瓦大學(University of Delaware)的白斯教授(Harsh Bais),表達希望能進他的實驗室學習。當白斯老師回信說「OK」的時候,康納高興得不得了。

於是他就開始了他的實驗室生活:下課後、週末以及暑假,康納都在白斯老師的實驗室裡種阿拉伯芥(Arabidopsis thaliana)。雖然他也是高中的游泳校隊,但他盡可能地投入時間作實驗。

成果是豐碩的。兩年後,康納在白斯教授的指導下,解出了植物接到鄰居的「狼煙」以後,接下來做了什麼;他們的成果發表在2017年的「植物科學前鋒」(Frontier in Plant Science)期刊上。

以一個高中生來說,這可是個非同小可的成就;康納不只是付出了許多努力,他也細心觀察每一個實驗。因為他夠細心,所以才沒有錯失了重要的發現。

這個重要的發現是什麼呢?有一天他如常地進行實驗:把一株阿拉伯芥用鑷子弄了幾個傷口,準備明天觀察它的反應。不同的是,這次旁邊有一株阿拉伯芥沒有被他弄傷。

第二天他看到了令他不敢相信的結果:旁邊的阿拉伯芥的主根變長、而且還長出了不少側根。

於是他們做了更多測試。他們發現:旁邊有受傷的伙伴的小芥們,主根生長的速度大約…