跳到主要內容

農桿菌(Agrobacterium tumefaciens)的不確定性

現在作植物的轉殖,幾乎都是用農桿菌了。這個格蘭氏陰性(Gram negative)桿菌,原本是農作物的病菌,會導致植物產生腫瘤(crown gall);雖然植物的腫瘤不會轉移也沒有致命的風險,卻會使植物生產的養分,因為要供應給腫瘤而造成產量減少。

農桿菌所產生的腫瘤。圖片來源:wiki
農桿菌所造成的危害,最早是在葡萄裡面發現;後來慢慢發現它其實可以危害許多植物,不過在自然界中以雙子葉植物居多。農桿菌自己帶了一個質體,稱為Ti質體。這個Ti質體,在農桿菌感染植物時,其中有一段DNA會插入植物的基因體中。

這段DNA(稱為T-DNA)裡面帶有合成兩種植物賀爾蒙所需的酵素基因,進入植物基因體後,便會使得該植物細胞開始大量產生生長素(auxin)與細胞分裂素(cytokinin)。這兩種賀爾蒙相加的結果,會使得細胞開始分裂增生,於是就產生腫瘤了。當然,T-DNA中還有其他的基因,會驅使植物細胞合成農桿菌所需要的養分,包括了小分子氨基酸與磷酸化的糖類等,這樣農桿菌在腫瘤中才能生長壯大。

原本研究農桿菌是為了要打敗它,但是科學家在研究的過程中發現,這隻細菌非常的有意思。原來,農桿菌在將T-DNA轉入植物基因體時,根本不管裡面有什麼、也不管有多長(當然,太長了效率會降低),它只認這段DNA的兩邊邊界(稱為左右邊界),然後就一股腦地將左右邊界之間的DNA給塞進植物裡面了。

農桿菌的轉殖原理。左邊是農桿菌,右邊是植物細胞;
C為Ti質體,載體中的a為T-DNA。圖片來源:wiki
這樣有意思的轉殖過程,就讓科學家們想到,如果可以把T-DNA用自己想要放進植物裡面的基因給取代,是不是就可以把「任何基因」都給它放進去了呢?

理論上是這樣,不過因為Ti質體實在是太大了(大約200kb以上),造成在實驗室裡面的操作很困難。這個障礙,直到1983年 Hoekema 以及de Frammond這兩個研究團隊發現,可以把Ti質體一分為二之後,農桿菌才成為研究植物的人的心頭寶。

從此以後,農桿菌開始被大量用在製作轉基因植物上;原本是雙子葉植物的病原菌的它,經過研究團隊悉心調製配方以後,它現在已經可以說是少有敵手。跟基因槍相比,又不用買很貴的儀器、也不需要買金粉或鎢粉;只要把質體做好,塞到農桿菌裡面,養個一堆以後,把要轉的組織泡在裡面若干時間,就大功告成了!它能夠成為植物研究者的心頭寶,真的不是蓋的!

但是,它還是有一些限制。過去的研究發現,由於農桿菌只需要在植物基因體上找到很小一段序列相似,就可以進行轉殖;於是幾乎可以說,農桿菌在植物基因體中的「任何地方」都可以把T-DNA塞進去。這樣雖然很方便,但也有麻煩。有時它會破壞基因,造成植物產生一些特殊的性狀。

當然,那樣的基改植物,就不能使用了;雖然它還可以有其他的用途。不過,有另外一個疑問是:農桿菌真的有那麼「乖」,就只會把左右邊界之間的DNA塞進植物裡面而已嗎?

這個疑問,如果問早期研究植物的科學家,可能會被嗤之以鼻;他們會告訴你,當然!不過這個當然,在1990年代已經被打破了。

在1992年12月2日,當加基公司(Calgene Inc)正在為了它們的莎弗番茄(Flavr Savr Tomato)申請上市忙得天翻地覆時,收到了食品藥物管理局的來函,希望他們澄清一件事:是否真的只有T-DNA的序列嵌入番茄中?

原本加基公司也認為食品藥物管理局未免多此一問,但等到南方墨點試驗(Southern Blot)出爐,他們很驚訝地發現:約有20%-30%的農桿菌載體序列也出現在植物中(1)。於是他們只得將這些含有農桿菌載體序列的番茄剔除。

後來,Neal Gutterson等人也發現,農桿菌的載體序列的確會出現在基改植物中;而且比例高於加基公司所做出來的結果(50%~80%)。不過,Gutterson的研究團隊,後來便在載體中放了一個致死基因,只要轉殖過程中把包含了致死基因的載體序列放進去了,植物便會死亡(2)。

看起來似乎額外的序列加入植物的問題解決了,但筆者過去的經驗發現,農桿菌有時會只嵌入短短的序列(只有幾個或十幾個鹼基對),這短短的序列,如果插入基因中,仍足以破壞蛋白質的產生,或是打亂基因的表現;可是這樣短的序列,卻無法以南方墨點試驗鑑定,嵌入致死基因也無法預防這樣的事情發生...所以,究竟農桿菌用來轉殖,是否真的是安全的?除卻定序整個基因體(需要相當高的經費)之外,通常都是由檢驗外觀性狀以及基改植物各大小分子的表現量是否異於原植物而已。

所以,是否安全呢?筆者也沒有答案,您呢?

(台大科教中心擁有此文版權,其他單位需經同意始可轉載。)

參考文獻:

1. Belinda Martineau. 番茄一號-全球第一個上市基改食品「莎弗番茄」的起與落。遠流出版。

2. Bill Hanson, Dean Engler, York Moy, Bob Newman, Ed Ralston and Neal Gutterson. 1999. A simple method to enrich an Agrobacterium-transformed population for plants containing only T-DNA sequences. The Plant Journal. 19(6):727–734.

留言

這個網誌中的熱門文章

多於12排的玉米是基改玉米(GMO corn)?假的啦!

最近從朋友那裡收到了這張圖...
這張圖說,玉米果實超過12排的都是基改(大陸稱為轉基因)玉米。從圖片上的文字是簡體來看,顯然是從大陸傳過來的資訊,但不管資訊從哪裡來,這資訊是真的嗎?首先我們先從邏輯上來判斷。什麼決定玉米果實有幾排?顯然不是製造基改玉米的基因。目前的基改玉米,大多都是帶有蘇力菌的抗蟲基因的Bt玉米。Bt玉米是植入蘇力菌的cry基因,而這個基因的作用是讓食用它的昆蟲腸穿孔死亡,並不會影響玉米的排數。當然,可能會有讀者說,或許當初製作基改玉米的生技公司就選用了多於12排的玉米來植入這個基因,所以我們還是可以用這個標準來判別啊?別忘了一件事:生技公司選用的品系,當然是目前受歡迎的品系;他們不會特別去選一個不怎麼受歡迎的品系來製作基改玉米。也就是說,就算當初選來製作基改玉米的品系它的果實真的是多於12排好了,肯定也有非基改的版本在市面上流通,怎麼能以此來判別誰是基改、誰是非基改呢?當然光靠邏輯,可能還不能說服大家;我在網路上查了一下發現,有一篇一樣是來自大陸的闢謠文章(有興趣的朋友可以去看一下,連結在此),裡面提到:『甜玉4號,它的穎果排數為14,1992年通過北京市農作物品種委員會審定通過的雜交甜玉米品種;其二是登海9號,它的穎果排數為16,1994年由山東省農科院雜交育成並在多地開始規模化試種;其三是興農998,它的穎果排數為20排,2003年開始規模化試種的雜交種。...轉基因玉米最早被商品化種植的時間是1995年(在美國種植),甜玉4號、登海9號都早於這個時間。所以這些玉米雜交種實例可以證明「只有穎果少於12排的玉米才是非轉基因,多於12排的玉米都是轉基因!」是謠言!』
事實上,因為大家喜歡果實大的玉米,所以多於12排的玉米很常見。網友補充:1. 玉米排數正常是偶數,這根雌花形成有關。如果不是偶數,就是授粉不完全。2. 農友種苗公司育成的「華珍二號」,其果實是12排或14排,但它是貨真價實的非基改玉米。3. 根據台南農改場的資料,肯定多於12排的玉米有:     硬質玉米:台南16號(14-16)、台南20號(16)、台南29號(14-16)、台南30號(14-16)     甜玉米:台南27號(14-16)、台南28號(14-16)     另外還有一些是可能會多於12排的,就不列出了。這些可都不是基改玉米喔!目前台灣還不能種植基改作物,但允許基…

鳳梨會「咬舌」是因為噴了生長素?

今天早上看到可憐的鳳梨又被黑了...或者說,種鳳梨的農夫又被黑了!
鳳梨會咬舌是因為生長過程中噴了生長素?
關於植物的生長素是什麼,請參考一下「吃到含植物生長激素的水果會性早熟?」這篇文章。

至於為什麼吃鳳梨會「咬舌」,是因為鳳梨含有鳳梨蛋白酶(Bromelain)。

鳳梨蛋白酶有兩種,一種存在於莖裡面(EC3.4.22.32),另一種存在於果實中(EC3.4.22.33)。果實裡面的鳳梨蛋白酶,在1891年時就由委內瑞拉的化學家Vicente Marcano從發酵的鳳梨果實中分離出來了。它可能是第一個由植物分離出來的蛋白質分解酵素。

鳳梨蛋白酶可以用來軟化肉質,跟木瓜酵素(papain)一樣好用。我們吃了鳳梨以後,會覺得舌頭刺刺痛痛的,是因為鳳梨蛋白酶(鳳梨酵素)在分解你舌頭細胞的蛋白質。因為鳳梨蛋白酶的作用溫度是攝氏35-45度,所以我們口腔裡的溫度剛剛好適合。因此,當你在吃它的時候,它也在吃你(XD)。

至於生長素是否會造成底部(蒂頭)變大?當然不會!蒂頭(也就是俗稱的鳳梨心)的大小,只有跟鳳梨的品系(品種)有關,跟鳳梨是否噴了生長素無關。以前大家喜歡挑蒂頭小的鳳梨,是因為心比較小才可以吃多一點果肉。不過,現在很多鳳梨的心也都可以吃了。把心的大小跟鳳梨是否噴了生長素連在一起,鳳梨真的好冤枉啊!

話說回來,鳳梨蛋白酶其實在莖裡面的含量更高,所以在市面上販售的軟肉精,裡面如果用的是鳳梨蛋白酶,通常都是在鳳梨採收後再取莖去榨汁純化的。鳳梨蛋白酶除了可以用來做軟肉精以外,還可以用來清創(debridement)--清除掉死亡、腐爛的組織,讓新的組織可以長出來。

另外一個常用的軟肉精是木瓜酵素。但是為什麼木瓜不會咬舌呢?原來成熟的木瓜裡面已經沒有木瓜酵素了!木瓜酵素是由未成熟的木瓜果的乳膠(latex)乾燥後提煉出來的。

不知道為什麼大家這麼喜歡造鳳梨的謠呢?想到當年英國國王查爾斯二世為了要在歐洲吃到鳳梨,還要大費周章地蓋起歷史上的第一個暖房,我們現在不用暖房就可以吃到鳳梨,卻不斷的有人在告訴我們「鳳梨很危險」...唉!

兩位鳳梨農網友補充:

★果梗(蒂頭)的問題:鳳梨果梗的大小,跟本身植株健壯有關,越健壯的植株果梗就會越粗大!另外果農為了防裂梗,會在紅喉期澆灌硼砂水溶液時加入奈乙酸鈉(一般農民最多會加4公克在500公升水中),這也會使果梗粗大。
★使用激素的問題:…

老祖宗的偏方殺死多重抗藥菌

現代醫學常常對於某些偏方不屑一顧,不過最近諾丁漢大學(University of Nottingham)的微生物學家哈里森博士(Freya Harrison)決定要來試試看記載於九世紀書中的古方,發現竟然可以殺死多重抗藥菌。

這本書,Bald's Leechbook,裡面有個用來治療睫毛毛根感染的方子。這藥方是這麼製作的:

將等量的韭菜與大蒜混合後搗碎,加入公牛膽與酒在銅鍋中烹煮九天。(詳見本文最後的更正)

研究人員發現,要重現古方其實也不容易;雖然現在也有韭菜與大蒜,但是育種使得現代的韭菜與大蒜跟九世紀的品系有所不同;即使研究人員找到了所謂的「傳統」(heritage)品種,但他們仍擔心是否還是不一樣。

公牛膽倒是比較容易,很多化學藥劑公司都販售膽鹽;另一個問題是銅鍋。銅鍋非常貴,因此哈里森博士決定把整個配方在玻璃器品中烹煮九天,但在配方中加入一片銅同煮。

九天以後配方完成。哈里森博士說,烹煮的過程中整個實驗室充滿了大蒜的味道,讓附近的人都以為他們在實驗室裡煮東西吃;九天結束時,藥膏有個恐怖的味道。

但是味道恐怖歸恐怖,哈里森博士發現它可以殺死土壤中的細菌。更好的是,它可以治療被多重抗藥性金黃葡萄球菌感染的老鼠,效果與萬古黴素(Vancomycin)相當。

接下來的工作就是要了解為何這古方有效。2005年有另一個研究團隊嘗試過同樣的方子,但沒有任何效用。唯一的差別是他們沒有煮九天。而單獨使用任何一個成分也都沒有效果。

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

2015/10/10 更正:由於當初只有參考文獻1中的文字可供參考,而New Scientist 使用了stewing這個詞,使筆者誤以為是「將等量的韭菜與大蒜混合後搗碎,加入公牛膽與酒在銅鍋中烹煮九天。」;本文中的研究於2015/8出版於mBio期刊(2),參考其中的方法發現,正確的製備過程是「將等量的韭菜與大蒜混合後搗碎,加入公牛膽與酒在銅鍋中置放九天。」。特此更正。

2020/7/29 更新:最新的研究發現,以洋蔥(onion)取代韭菜(leek)的效果更好。因為原文提到的那名詞可能是洋蔥也可能是韭菜,所以研究團隊測試了兩種版本,結果發現洋蔥的效果更好。當然,研究團隊也提到,說不定是因為洋蔥比較容易搗碎,所以效果比較好。在最近發表於Scientific Reports的文章中提…