跳到主要內容

狸藻(bladderwort)不是肉食性植物(carnivorous plant)

狸藻。圖片來源:wiki
狸藻為狸藻屬(Utricularia)植物的總稱,全世界有超過兩百種,有些是水生植物,有些則是生活在濕地的陸生植物。它們分佈的區域很廣,除了南極洲以外,都可以找到它們的蹤跡。

這種植物有個很特別的地方:植物體上除了行光合作用的葉片之外,還有捕蟲囊(bladder trap)。這些捕蟲囊看起來就像植物上的小袋子。

狸藻與它的捕蟲囊。圖片來源:wiki
過去的研究發現,當小蟲靠近捕蟲囊時,會因為碰觸到外面的剛毛狀分支附屬物,驅動狸藻的捕蟲囊收縮,將小蟲吸進去。
圖片來源:wiki
因為這捕蟲囊要依靠小蟲的觸動才會發動,而且狸藻自己能夠進行光合作用;再加上其他的食蟲植物(如捕蠅草、毛氈苔等)也都是吃蟲的,所以,雖然早在1900年便已有科學家在捕蟲囊中發現藻類與植物的花粉,但是都認為那只不過是不小心「掉」進去的而已。

最近維也納大學(University of Vienna)的研究團隊發現,那些不小心「掉」進去捕蟲囊中的藻類與植物的花粉,並不是沒有用的垃圾;狸藻還是會消化、吸收他們的微量元素,提供自己生長所需。

怎麼確立這部分呢?原來,有些狸藻生長在泥炭沼澤(peat bogs)裡,在那裡,小蟲的來源極端缺少,如果光是依靠捕蟲,狸藻怎麼生活得下去呢?

於是,研究團隊分析了八個不同地區(包括泥炭沼澤、湖與人工池塘)、三個不同種類(分別是南方狸藻U. australis、普通狸藻U. vulgaris 與細葉狸藻 U. minor)、共兩千個捕蟲囊的內涵物。結果發現,只有10%的捕蟲囊內有小動物;50%的捕蟲囊內有藻類、植物的花粉(許多來自於水邊的陸生植物);其他40%則是真菌的菌絲、苔蘚的葉狀體以及土壤顆粒。

研究團隊分析發現,只有小動物、藻類、植物的花粉在捕蟲囊內的含量,可以對應到狸藻的生長;而真菌的菌絲、苔蘚的葉狀體以及土壤顆粒則無法對應到狸藻的生長。

當然,發現除了小動物以外,藻類與植物的花粉也可以影響狸藻的生長,證明它們出現在捕蟲囊內並非單純只是「意外」。狸藻把它們吸進去以後,仍然會消化、吸收、利用它們的養分來幫助自己的成長。

不過,小動物在捕蟲囊中的出現,除了可以對應到狸藻的生長以外,也可以對應到狸藻的碳/氮比(C/N ratio)。動物的蛋白質(氮)含量較高,可以提供狸藻需要的氮元素,同時對狸藻生成過冬所需要的芽(hibernation bud)也很重要。

過去一直以為狸藻是肉食性植物,維也納大學的發現,讓大家了解到,或許我們該改稱狸藻為雜食性植物(omnivorous plants)囉!

狸藻通常被當作雜草,但是因為他的花頗有可看性,因此也有人培育它。

狸藻的花。圖片來源:wiki
狸藻中的絲葉狸藻(U. gibba)已經於2013年完成定序,總共有八千兩百萬個鹼基對(base pairs),卻有兩萬八千五百個基因,也就是說,它的非編碼DNA含量極少(約3%)。百分之三到底有多麼少呢?這樣說吧,人類的基因內,非編碼DNA佔了98.5%...百分之三夠少吧!

(台大科教中心擁有此文版權,其他單位需經同意始可轉載。)

參考文獻:

2014/12/19. A vegetarian carnivorous plant. Science Daily.

Marianne Koller-Peroutka, Thomas Lendl, Margarete Watzka and Wolfram Adlassnig. 2014. Capture of algae promotes growth and propagation in aquatic Utricularia. Ann. Bot. doi: 10.1093/aob/mcu236.

Wikipedia. Utricularia.

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

光合作用(photosynthesis)釋放氧氣,氧氣來自於水

  圖片來源: 維基百科 說真的,我雖然有時候也會寫一些「老」發現,但是像這樣幾乎每一本生物教科書與植物生理學教科書都會提到的事情,我還真的沒有想過要寫。 事情是這樣開始的。 2024年的6月1日下午,我收到記者的信息,內容如下: 今天北市教甄題目出現「植物行光合作用釋放出氧,氧來自何者?選項有A二氧化碳、B水、C葡萄糖、D空氣中的氧。」但答案是A的爭議,想請問現在能就這個題目跟您進行簡短採訪釋疑嗎? 我一看之下大驚失色,答案怎麼會是A呢?當然是B。 但是,說話要有證據,於是我就去查了幾本書,再加上網友的協助,最後得到的答案如下: 在1931年時,當C. B. van Niel(1897-1985)觀察光合細菌(包括紫硫菌與綠硫菌)時,因為這兩種細菌利用硫化氫(H 2 S)與二氧化碳為原料,產生元素硫,所以他就提出「光合作用的氧氣來自於水」的假說。  他的假說,在1941年,由Ruben等人以同位素氧18標定的水或二氧化碳確認,光合作用放出來的氧氣是來自於水。 答案是B才對啊! 所以我就發了一篇短文說明。 沒想到,後來看到的新聞竟然是: 圖片取自顏聖紘老師臉書 只能說真的蠻失望的。然後我點進去看了一下幾個新聞,老師堅持不改,這讓我覺得很失望;但更好笑的是,教育局說他們「尊重專業」,所以老師說不改就不改。 什麼時候,「尊重專業」可以這樣用了?難道Ruben等人的實驗就可以不算? 於是我就去挖出了Ruben等人的論文。 Ruben等人 (1941) 使用氧的同位素 (O 18 ) 作為追蹤劑,探討了光合作用中氧氣的來源。他們把綠藻 (Chlorella) 懸浮在含有重氧水 (H 2 O 18 ) 和一般碳酸氫鉀 (KHCO 3 ) 的溶液中。實驗結果顯示,釋放出的氧氣中的 O 18 /O 16 比例與水中的比例相同。 另外,當藻類在含有O 18 標記的二氧化碳 (CO 2 ) 和一般的水 (H 2 O) 中進行光合作用時,釋放出的氧氣中並沒有檢測到O 18 。 所以,實驗結果顯示:氧氣來自於水,而不是二氧化碳。 我其實很好奇,北市教甄出題的老師不改答案的理由是什麼?難道他自己做實驗發現氧氣來自於二氧化碳嗎?如果這樣,那可真的是諾貝爾等級的發現,應該趕快聯絡Nature或Science來發表啊!為什麼只有在教甄的答案上發表呢? 如果是弄錯了,那改一...