跳到主要內容

根瘤菌(Rhizobium)與人

自從人類在一萬一千年前學會了農耕以後,如何提升農作物的產量便成為人們念茲在茲的議題。使用動物的排泄物、以及收集植物的落葉、家庭垃圾製作堆肥,這些方式都在試驗中發現可以提升產量;而可能早在古埃及時代,人們便已經發現種植豆科植物(legumes)如大豆、豌豆等,可以使土壤肥沃。

大豆。圖片來源:wiki

中國在漢朝時已懂得利用大豆與小米、小麥輪作(1),維持土壤的肥力;同樣的概念,在歐洲大約一千年後才出現。但是,不論是埃及、中國、或是歐洲,對於為何豆科植物可以提升土壤的肥力這件事,都是知其然而不知其所以然。

這個謎題,直到十九世紀末才被解開。1888年,德國的農業化學家Hermann Hellriegel(下圖)與 Hermann Wilfarth發現根瘤可以將空氣中的氮(nitrogen)轉變為氨(ammonia)。在同一年,根瘤菌也被荷蘭的Martinus W. Beijerinck(下圖)發現了(2)。

Hermann Hellriegel. 圖片來源:wiki
Martinus W. Beijerinck.圖片來源:wiki
雖然在過去根瘤菌曾經一度被誤會為真菌(也真的有真菌與植物共生,不過共生的方式與根瘤菌不同),當時Beijerinck將根瘤菌命名為Bacillus radicicola,後來才被重新分類到Rhizobium這一屬。

從那時候開始,根瘤菌就成為研究者的課題之一。豌豆根瘤菌(Rhizobium leguminosarum)的基因體已經在2006年定序完成(如下圖),除了它本身的染色體(右上)以外,根瘤菌還有六個質體,其中與植物共生相關的nod(根瘤形成,nodulation of the host plant)以及nitfix(固氮),都位於第三大的質體pRL10上。

豌豆根瘤菌的基因體。圖片來源:Genome Biology
根瘤菌與植物之間的互動是相當複雜的。根瘤菌原本是土壤中自由生活的格蘭氏陰性菌,植物在缺氮時,根部會分泌甜菜鹼(betaine)、類黃酮(flavonoid)與異黃酮(isoflavonoid)等物質來吸引根瘤菌;而根瘤菌受到吸引後,會分泌由糖與脂肪酸構成的Nod factor(如下圖),作用在植物的根毛上,使自己更容易附著。

圖片來源:wiki
接著就開始根瘤的形成。目前知道,究竟一棵植物能夠形成多少根瘤,其實是經過精密的調節機制的,可能也與細胞分裂素(cytokinin)有關(3)。

至於為什麼要形成根瘤呢?其實是因為大氣中的氮是非常非常穩定的三鍵結構,要打破一分子的氮需要16個ATP;在這麼高的能量需求下,根瘤菌中的固氮酵素(nitrogenase)無法在氧氣存在下進行固氮反應。事實上,固氮酵素只要接觸到氧氣大約四分半鐘,活性就剩下不到百分之一了(4)。

根瘤,是植物為了讓根瘤菌可以固氮所形成的特殊構造(如下圖)。根瘤的表面有厚厚的表皮(下圖左下角)隔絕空氣,使根瘤內部呈現微氧(microaerobic)的狀態。內部的根瘤菌在微氧狀態下呈現特殊的型態,被稱為「類細菌」(bacteroid);而根瘤內部的植物細胞以及根瘤菌所需要的氧氣,則是由「共生血紅素」(symbiotic,sHbs)來供應。

根瘤的切面。圖片來源:wiki
其實,除了根瘤菌屬以外,能夠與植物形成共生關係來固氮的,還包括了 Bradyrhizobium(慢生根瘤菌屬), Sinorhizobium(中華根瘤菌屬), Azorhizobium, Mesorhizobium(中慢生根瘤菌屬), Burkholderia (類鼻疽菌屬)與 Cupriavidus(貪銅菌屬)等,囊括了alpha- 與 beta- proteobacteria(α與β變形菌)。不過,由於這些菌的nod基因相似性極高,推想應該是透過質體平行轉移(horizontal transfer)的結果。

直到1909年哈伯(Fritz Haber)發明工業固氮之前,農業的氮肥來源,除了堆肥以外,就是由智利生產的生硝(Caliche,成分為硝酸鈉)。在工業固氮發明之後,智利的生硝就沒人要了:產量由1925年的每噸45美金落到1934年的每噸19美金,而且由250萬噸降到80萬噸。科技的進步,雖然造福了許多人,但是對當年失業的四萬五千八百多名員工以及他們的家庭來說(5),還真的很難說是福呢!

除了豆科植物以外,能與固氮微生物共生的植物包括小頭木麻黃(Casuarina oligodon,與Frankia屬菌共生)、滿江紅(Azolla,與Anabaena屬的藍綠菌共生);這兩種植物都在農業上被廣泛的應用:小頭木麻黃在新幾內亞、滿江紅則是在中國南方以及台灣的水稻田中做為天然氮肥的來源。只可惜隨著哈伯法的發明而來的化肥,要在水稻田中看到滿江紅已經非常不容易了!

有機水稻田裡的滿江紅(攝於慈濟基金會大愛農場)。
(台大科教中心擁有本文版權,其他單位需經同意始可轉載)

參考文獻:

1.2014/8/17. 原來秦朝、漢朝的主食是小米!老葉的植物王國。

2.Ann M. Hirsch 2009. Brief History of the Discovery of Nitrogen-fixing Organisms.

3.2014/9/21. 豆科植物如何保持不多不少的根瘤(root nodule)?老葉的植物王國。

4.Taiz and Zeiger. Plant Physiology. 5th ed.

5.Wikipedia. Fritz Haber.

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

光合作用(photosynthesis)釋放氧氣,氧氣來自於水

  圖片來源: 維基百科 說真的,我雖然有時候也會寫一些「老」發現,但是像這樣幾乎每一本生物教科書與植物生理學教科書都會提到的事情,我還真的沒有想過要寫。 事情是這樣開始的。 2024年的6月1日下午,我收到記者的信息,內容如下: 今天北市教甄題目出現「植物行光合作用釋放出氧,氧來自何者?選項有A二氧化碳、B水、C葡萄糖、D空氣中的氧。」但答案是A的爭議,想請問現在能就這個題目跟您進行簡短採訪釋疑嗎? 我一看之下大驚失色,答案怎麼會是A呢?當然是B。 但是,說話要有證據,於是我就去查了幾本書,再加上網友的協助,最後得到的答案如下: 在1931年時,當C. B. van Niel(1897-1985)觀察光合細菌(包括紫硫菌與綠硫菌)時,因為這兩種細菌利用硫化氫(H 2 S)與二氧化碳為原料,產生元素硫,所以他就提出「光合作用的氧氣來自於水」的假說。  他的假說,在1941年,由Ruben等人以同位素氧18標定的水或二氧化碳確認,光合作用放出來的氧氣是來自於水。 答案是B才對啊! 所以我就發了一篇短文說明。 沒想到,後來看到的新聞竟然是: 圖片取自顏聖紘老師臉書 只能說真的蠻失望的。然後我點進去看了一下幾個新聞,老師堅持不改,這讓我覺得很失望;但更好笑的是,教育局說他們「尊重專業」,所以老師說不改就不改。 什麼時候,「尊重專業」可以這樣用了?難道Ruben等人的實驗就可以不算? 於是我就去挖出了Ruben等人的論文。 Ruben等人 (1941) 使用氧的同位素 (O 18 ) 作為追蹤劑,探討了光合作用中氧氣的來源。他們把綠藻 (Chlorella) 懸浮在含有重氧水 (H 2 O 18 ) 和一般碳酸氫鉀 (KHCO 3 ) 的溶液中。實驗結果顯示,釋放出的氧氣中的 O 18 /O 16 比例與水中的比例相同。 另外,當藻類在含有O 18 標記的二氧化碳 (CO 2 ) 和一般的水 (H 2 O) 中進行光合作用時,釋放出的氧氣中並沒有檢測到O 18 。 所以,實驗結果顯示:氧氣來自於水,而不是二氧化碳。 我其實很好奇,北市教甄出題的老師不改答案的理由是什麼?難道他自己做實驗發現氧氣來自於二氧化碳嗎?如果這樣,那可真的是諾貝爾等級的發現,應該趕快聯絡Nature或Science來發表啊!為什麼只有在教甄的答案上發表呢? 如果是弄錯了,那改一...