跳到主要內容

根瘤菌(Rhizobium)與人

自從人類在一萬一千年前學會了農耕以後,如何提升農作物的產量便成為人們念茲在茲的議題。使用動物的排泄物、以及收集植物的落葉、家庭垃圾製作堆肥,這些方式都在試驗中發現可以提升產量;而可能早在古埃及時代,人們便已經發現種植豆科植物(legumes)如大豆、豌豆等,可以使土壤肥沃。

大豆。圖片來源:wiki

中國在漢朝時已懂得利用大豆與小米、小麥輪作(1),維持土壤的肥力;同樣的概念,在歐洲大約一千年後才出現。但是,不論是埃及、中國、或是歐洲,對於為何豆科植物可以提升土壤的肥力這件事,都是知其然而不知其所以然。

這個謎題,直到十九世紀末才被解開。1888年,德國的農業化學家Hermann Hellriegel(下圖)與 Hermann Wilfarth發現根瘤可以將空氣中的氮(nitrogen)轉變為氨(ammonia)。在同一年,根瘤菌也被荷蘭的Martinus W. Beijerinck(下圖)發現了(2)。

Hermann Hellriegel. 圖片來源:wiki
Martinus W. Beijerinck.圖片來源:wiki
雖然在過去根瘤菌曾經一度被誤會為真菌(也真的有真菌與植物共生,不過共生的方式與根瘤菌不同),當時Beijerinck將根瘤菌命名為Bacillus radicicola,後來才被重新分類到Rhizobium這一屬。

從那時候開始,根瘤菌就成為研究者的課題之一。豌豆根瘤菌(Rhizobium leguminosarum)的基因體已經在2006年定序完成(如下圖),除了它本身的染色體(右上)以外,根瘤菌還有六個質體,其中與植物共生相關的nod(根瘤形成,nodulation of the host plant)以及nitfix(固氮),都位於第三大的質體pRL10上。

豌豆根瘤菌的基因體。圖片來源:Genome Biology
根瘤菌與植物之間的互動是相當複雜的。根瘤菌原本是土壤中自由生活的格蘭氏陰性菌,植物在缺氮時,根部會分泌甜菜鹼(betaine)、類黃酮(flavonoid)與異黃酮(isoflavonoid)等物質來吸引根瘤菌;而根瘤菌受到吸引後,會分泌由糖與脂肪酸構成的Nod factor(如下圖),作用在植物的根毛上,使自己更容易附著。

圖片來源:wiki
接著就開始根瘤的形成。目前知道,究竟一棵植物能夠形成多少根瘤,其實是經過精密的調節機制的,可能也與細胞分裂素(cytokinin)有關(3)。

至於為什麼要形成根瘤呢?其實是因為大氣中的氮是非常非常穩定的三鍵結構,要打破一分子的氮需要16個ATP;在這麼高的能量需求下,根瘤菌中的固氮酵素(nitrogenase)無法在氧氣存在下進行固氮反應。事實上,固氮酵素只要接觸到氧氣大約四分半鐘,活性就剩下不到百分之一了(4)。

根瘤,是植物為了讓根瘤菌可以固氮所形成的特殊構造(如下圖)。根瘤的表面有厚厚的表皮(下圖左下角)隔絕空氣,使根瘤內部呈現微氧(microaerobic)的狀態。內部的根瘤菌在微氧狀態下呈現特殊的型態,被稱為「類細菌」(bacteroid);而根瘤內部的植物細胞以及根瘤菌所需要的氧氣,則是由「共生血紅素」(symbiotic,sHbs)來供應。

根瘤的切面。圖片來源:wiki
其實,除了根瘤菌屬以外,能夠與植物形成共生關係來固氮的,還包括了 Bradyrhizobium(慢生根瘤菌屬), Sinorhizobium(中華根瘤菌屬), Azorhizobium, Mesorhizobium(中慢生根瘤菌屬), Burkholderia (類鼻疽菌屬)與 Cupriavidus(貪銅菌屬)等,囊括了alpha- 與 beta- proteobacteria(α與β變形菌)。不過,由於這些菌的nod基因相似性極高,推想應該是透過質體平行轉移(horizontal transfer)的結果。

直到1909年哈伯(Fritz Haber)發明工業固氮之前,農業的氮肥來源,除了堆肥以外,就是由智利生產的生硝(Caliche,成分為硝酸鈉)。在工業固氮發明之後,智利的生硝就沒人要了:產量由1925年的每噸45美金落到1934年的每噸19美金,而且由250萬噸降到80萬噸。科技的進步,雖然造福了許多人,但是對當年失業的四萬五千八百多名員工以及他們的家庭來說(5),還真的很難說是福呢!

除了豆科植物以外,能與固氮微生物共生的植物包括小頭木麻黃(Casuarina oligodon,與Frankia屬菌共生)、滿江紅(Azolla,與Anabaena屬的藍綠菌共生);這兩種植物都在農業上被廣泛的應用:小頭木麻黃在新幾內亞、滿江紅則是在中國南方以及台灣的水稻田中做為天然氮肥的來源。只可惜隨著哈伯法的發明而來的化肥,要在水稻田中看到滿江紅已經非常不容易了!

有機水稻田裡的滿江紅(攝於慈濟基金會大愛農場)。
(台大科教中心擁有本文版權,其他單位需經同意始可轉載)

參考文獻:

1.2014/8/17. 原來秦朝、漢朝的主食是小米!老葉的植物王國。

2.Ann M. Hirsch 2009. Brief History of the Discovery of Nitrogen-fixing Organisms.

3.2014/9/21. 豆科植物如何保持不多不少的根瘤(root nodule)?老葉的植物王國。

4.Taiz and Zeiger. Plant Physiology. 5th ed.

5.Wikipedia. Fritz Haber.

留言

這個網誌中的熱門文章

為什麼「種豆南山下,草盛豆苗稀」?

陶淵明在「歸園田居」詩中,曾經提到「種豆南山下,草盛豆苗稀」。這首詩大家都很熟了,也是很受歡迎的國文教材,但是,有多少人認真去想為什麼「草盛豆苗稀」呢?難道只是因為陶淵明不會種田嗎?

雖然根據歷史的記載,「歸園田居」可能真的就是在他剛隱居的時候寫的(1);而在那時候,可能他的耕種技術也的確是還有待提升;不過筆者卻認為,從生物學的角度來看,「草盛豆苗稀」也不全是耕種技術的問題。

首先,我們來看一下氣候。陶淵明隱居的地點在潯陽柴桑,也就是現在的江西省九江市星子縣。當地是北緯29.44度,在北回歸線以北,屬於濕潤型亞熱帶氣候(2),1971-2000的年平均溫度為攝氏17.03度,每年四月就不再有攝氏零度以下的低溫(3)。雖然還是比臺灣偏北(台北市是北緯25.02度),大致上還是屬於溫和的氣候,植物的種類應該也不會相差太多。即使考慮近年來全球暖化的問題,應該也不會超過攝氏一度(4)。

在亞熱帶的台灣,夏天通常並不是植物茂盛生長的時期。為什麼呢?因為世界上90%的陸生植物是C3植物,這些植物在氣溫超過攝氏30度時,會因為光呼吸作用(photorespiration)造成水分的消耗大量上昇。C3植物(如大豆)在攝氏30度時,每抓一個二氧化碳分子就要消耗833個水(5),於是植物的生長速度就開始變慢。

不過,並不是所有的植物在夏天時生長速度都會變慢唷!有些植物,如玉米、甘蔗等,反而在夏天時長得特別好。為什麼呢?

原來玉米與甘蔗是所謂的C4植物,它們既耐熱又耐旱,跟C3植物比較起來,在攝氏30度時C4植物每抓一個二氧化碳的分子只消耗277個水(5),所以夏天的時候,它們的生長速度ㄧ點都不受影響呢!
說到這裡,讀者可能會想:什麼是C4植物?為什麼它們能夠既耐熱又耐旱呢?
所謂的C3、C4植物,指得是它們在光合作用上的不同。C3植物進行光合作用時,是由卡爾文循環(Calvin cycle)的酵素(RuBisCo,如圖二)直接抓取溶解在細胞中的二氧化碳,與核酮糖1,5-二磷酸(ribulose 1,5-bisphosphate,RuBP)進行反應;


而C4植物則在卡爾文循環上面,又增加了幾個步驟,而且這幾個步驟還跟卡爾文循環在不同的組織中進行呢(如圖三)!為什麼會這樣呢?


原來,C4植物多半都生活在亞熱帶或熱帶,在這些氣候區,植物進行光合作用時,會遇到一個大問題。

這個問題來自於卡爾文循環的第…

孔雀秋海棠的光合作用魔術

原產於馬來西亞雨林的孔雀秋海棠(Begonia pavonina),只有在光線極弱的狀況下葉片會出現藍色。當光線夠強的時候,葉片上的藍色就不會出現了。

因為這藍色是如此的美麗,使它得到了「孔雀秋海棠」(peacock begonia)的美名。大家搶著種它,想要看到那美麗的孔雀藍;但到底為什麼要出現這美麗的孔雀藍呢?

通常我們都認為,在葉片裡面除了葉綠素以外的光合色素,都是輔助色素:在光線不夠時,幫忙吸收更多光能;在光線太強時,把多餘的能量發散。所以孔雀秋海棠的孔雀藍,是否也是一種輔助色素呢?

之前的研究已經發現,這些孔雀藍,應該是來自於被稱為虹彩體(iridoplast)的一種色素體(plastid)。虹彩體位於葉片上表皮的細胞中,為葉綠體的變體。在最近的研究發現,這些虹彩體的類囊體(thylakoids)以一種不尋常的方式排列:每疊葉綠餅(grana)由三到四個類囊體組成,厚度約為40奈米;而一疊一疊的葉綠餅之間的距離約為100奈米。


一般的葉綠體,通常葉綠餅的排列是散亂的(如圖);孔雀秋海棠的虹彩體的葉綠餅卻排得如此整齊,有什麼作用呢?

研究團隊測量了20個虹彩體,發現它們的特殊構造賦予它們反射435~500奈米的光波的能力。這個波長正好就是藍光波段的最右邊,與綠光交界的位置。這就是為什麼孔雀秋海棠是藍色的原因吧!

不過,這些虹彩體不只是會反射藍光而已。研究團隊還發現,虹彩體讓孔雀秋海棠吸收較長波的綠光與紅光的能力提升了!這對孔雀秋海棠是非常重要的,因為它們通常在熱帶雨林的地面上生長。

在熱帶雨林裡,光線都被大樹給遮住了,使得地表的光線極弱。弱到怎樣的地步呢?大約是樹冠光線強度的百萬到千萬分之一喔!而且還不只是光線變弱而已,因為雨林中的大樹們把進行光合作用所需的兩個主要波段的光(460奈米與680奈米)都吸收得差不多了,在這樣的環境下,孔雀秋海棠如果不發展出吸收一點綠光的本事,還真的會混不下去。

事實上,因為這些特殊的構造,虹彩體比一般的葉綠體進行光合作用的效率更高。研究團隊藉著測量葉綠體的螢光(葉綠體進行光合作用時,一部份的葉綠素會把吸收的光以暗紅色的螢光發射出去;所以可以藉著測量螢光了解植物進行光合作用的效率)發現,虹彩體進行光合作用的效率,比一般的葉綠體都好。不過,當光線變強的時候,虹彩體的效率就沒有那麼好了;這或許就是為何,當我們把孔雀秋海棠種在光線…

【原來作物有故事】鳳梨 漂洋過海在臺灣發揚光大

作者:葉綠舒、王奕盛、梁丞志

在台灣提到鳳梨,一定會想到鳳梨酥這代表台灣的伴手禮。但是鳳梨其實不是台灣原產的水果喔!鳳梨原產於熱帶南美洲,在哥倫布1493年的第二次航行時於瓜德羅普的村莊中發現後引進歐洲,約於16世紀中葉傳入中國;台灣則是在1605年先由葡萄牙人引進澳門,再由閩粵傳入台灣,至今已有三百多年歷史。

在台灣,鳳梨因為台語諧音「旺來」很吉利而廣受大眾喜愛,但其實鳳梨的名字是根據它果實的型態來的,因為果實的前端有一叢綠色的葉片,讓以前的人覺得很像鳳尾,加上果肉的顏色像梨,所以就取名為「鳳梨」。至於英文的名稱也是因為果實的外型像毬果、而肉質香甜,所以就被取名為「松蘋果」(pineapple)啦!其實鳳梨果實的毬果狀的外觀主要是因為鳳梨是「聚合果」,每顆鳳梨是由200朵鳳梨花集合而成的!而它的學名Ananas則是來自於圖皮語,意思是很棒的水果。

在哥倫布把鳳梨引進歐洲以後,因為它的香甜好滋味讓它大受歡迎;但是身為熱帶水果的鳳梨,在溫帶的歐洲長得並不好!為了要讓王公貴族們吃到鳳梨,十六世紀的園丁們發明了「鳳梨暖爐」:把單顆鳳梨放在由馬糞堆肥做的暖床上的木製棚架,並升起爐火來保持溫暖,好讓鳳梨這熱帶植物可以在溫帶的歐洲開花結果;世界上第一個溫室就這樣誕生了,並由此開啟了歐洲建造溫室的熱潮!

鳳梨不只是改變了歐洲,在日本人到台灣後,嚐到了鳳梨的香甜滋味,便開始推動鳳梨產業。1903年,岡村庄太郎於鳳山設置岡村鳳梨工廠,生產鳳梨罐頭;後來逐漸形成中部以員林、南部以鳳山為中心的鳳梨生產體系。在1938年時,鳳梨罐頭工廠女工竟然佔了全台灣女性勞動人數三分之一以上呢!光復以後台灣的鳳梨產業也曾在1971年登上世界第一,讓台灣被稱為「鳳梨王國」。但是後來不敵其他國家的競爭,已經由外銷罐頭改為多以內銷鮮食鳳梨為主的型態了。

從清朝、日治時代直到現在,台灣的鳳梨品系一直都一樣嗎?當然不是囉!最早的鳳梨被稱為「在來種」,後來日治時代為了製作罐頭方便,從夏威夷引進了開英種;到了1980年以後,因為罐頭外銷敵不過競爭,台灣的鳳梨改為內銷且以鮮食為主,為了挽救鳳梨產業,農改場、農試所便培育出各種不同適合鮮食的鳳梨:包括不用削皮可以直接剝來吃的釋迦鳳梨(台農4號),最適合在秋冬生產的冬蜜鳳梨(台農13號),有特殊香氣的香水鳳梨(台農11號),以及因為果肉乳白色被稱為牛奶鳳梨的台農20號等…