跳到主要內容

從哈伯法(Haber-Bosch Process)說起

自從幾年前開始教通識課以後,對於許多課程要怎麼教,開始有了不同的想法。怎麼說呢?一般專業課程總是強調「專業」,舉個例子好了,學過國高中化學的同學應該都知道哈伯法(Haber-Bosch Process),在高溫高壓下以鐵粉做為催化劑將氮氣與氫氣轉化為氨(ammonia):

N2 + 3H2 → 2NH3

通常化學課的時候,老師只會提到,因為氮氣(N2)的兩個氮原子之間是三鍵,所以要打開氮氣很不容易;因此不但要用高溫高壓,還要用鐵粉當催化劑...

然後?就沒有了。講完了。

但是,哈伯法偉大的地方就只是這樣嗎?哈伯(Fritz Haber)因為發明了這個方法,得到1918年的諾貝爾化學獎。難道就是因為他成功的打斷了氮-氮三鍵而已嗎?

哈伯(Fritz Haber),圖片來源:wiki

當然不是。哈伯法的重要性在於,從此人類打開了以人工提高作物產量的大門,農作物的產量從此大大的提高。

當然,產量提高其實也是有限度的,在植物的營養上,有個名詞叫做「關鍵濃度」(critical concentration)。當土壤中的養分低於這個濃度時,植物的生長與養分的濃度成正比;超過這個濃度以後,植物的生長跟養分的濃度就不成正比了,也就是說,用再多也沒有明顯的效果。

但是,在過去只能使用天然肥料(動物的屍體、糞尿、植物的落葉等)的時代,由於天然肥料必需要等待微生物分解(這部分在堆肥時已經大致完成),再經過土壤中的微生物將其中含氮成分分解為硝酸根(nitrate,NO3-)與銨離子(NH4+)後,才能為植物所吸收,因此效果緩慢。加上為了方便起見,農人們總是會以單作(monoculture)的方式來種田,這種在大片的土地上種植單一作物的方式,很容易會使土壤缺少某些特定的養分(尤其是氮與磷),所以在哈伯法還沒有出現以前,要提高土壤內的氮濃度,除了使用天然肥料之外,就只剩下使用綠肥,或是與豆科植物輪作了。

但是,這些方法,都不能使土壤中的氮的濃度超過關鍵濃度;因此,當哈伯法出現之後,農夫將化學肥料施放在田裡,立刻有了奇效--農作物的產量大大的提升。加上育種改良以及殺蟲劑、除草劑的使用,20世紀小麥與稻米的產量提升了8-10倍(平均產量是4倍)。

但是哈伯法對於科學界的貢獻,並不僅僅在於農作物產量的提升;在哈伯發明化學固氮之前,一直有一派學說認為,這些在生物體中的化合物,只有生物才能合成(也就是所謂的生機論Vitalism)。雖然生機論在科學上的地位在1828年在維勒(Friedrich Wöhler)合成尿素以後,已經岌岌可危;但是直到哈伯法出現以後,生機論才不再被提起。

但是哈伯法對全人類最大的貢獻,還是在於:從此想要多少氮肥,就可以製作多少氮肥。雖然在十九世紀Sach等人的研究,已經使大家了解,要能夠正常的生長與繁殖,植物需要17種元素(稱為必需元素essential element);但是其中最關鍵的氮與磷,卻始終無法足量提供給植物。

但是,大量的施放氮肥,卻造成了另一個效應:死亡海域(Dead zone)。

死亡海域最早出現在1970年代。由於化肥的大量施用早在1930年代就開始了,因此也花了一些時間去釐清到底是怎麼回事。簡單來說就是,大量施放氮肥(主要是硝酸根)與磷肥(磷酸根)到土壤中,但是土壤主要是由矽酸鋁顆粒構成,也是帶負電的,所以同性相斥使得氮與磷無法久留在土壤中,很容易隨著雨水、灌溉水流到附近的湖泊與河流裡,最後流到海裡。

當海裡的氮與磷濃度上昇以後,造成藻類大量生長,形成藻華(algae bloom);藻華隔絕了水下植物的陽光,使得水下植物開始死亡;植物的死亡與分解吞噬了水中的氧氣,接著動物開始死亡...然後就是死亡海域。

由於慣行農法的單作、密植,使得化肥成為農業的必要之惡;所以死亡海域一直都是難以解決的問題。2008年的統計,全球的死亡海域共有405個點;而死亡海域的「熱區」集中在人煙稠密的北半球。

全球死亡海域熱區。圖片來源:wiki
而施放化肥加上灌溉,除了造成死亡海域之外,又會使得土壤酸化、鹽化。雖然哈伯法似乎在短時間內提高了農作物的產量,養活了許多人(這可以由1940年代開始,世界人口急速上昇看出來);

世界人口增長速度。圖片來源:wiki

但是,哈伯法所造成的副作用,包括死亡海域、土壤酸化、鹽化,以及因為人口大幅增長造成土地大量被開發的生態破壞等等...究竟是功是過呢?其實科學家發明了新技術,而這個新技術在大量被使用之後,產生了意想不到的變化,我想這也是當初哈伯始料未及的吧!

參考文獻:

Taiz and Zeiger, Plant Physiology, 5th ed.
Laurance Mee. 拯救死亡海域。2006。科學人。
Wikipedia. World populationDead zone.

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-No...