跳到主要內容

「看見」工作中的OEC

光合作用(photosynthesis)應該是世界上最偉大的代謝途徑(metabolic pathway)了;當地球最初合成的時候,原始大氣並不含氧。一直到25億年前,開始有了光合作用以後,出現了氧氣,讓地球產生了天翻地覆的變化,總稱為「大氧化事件」(GOE, Great Oxygenation Event)。

什麼樣的變化呢?首先,氧氣的出現使得專性厭養菌(obligate anaerobes)大量死亡、滅絕;這由某個角度來看,應該可以算是地球上的第一個大滅絕事件,可以稱之為「成鐵記」(Siderian)滅絕事件。第二,氧氣的出現使得好氧生物得以出現,由於「燃燒」(氧化)所產生的能量遠大於其他形式,好氧生物出現以後,迅速取得優勢。第三,氧氣出現以後,因為太陽輻射的關係,形成了臭氧層,而臭氧層可以吸收200-310 nm的光,這部分是部分的UVC與UVB,致突變的能力很高,臭氧層隔絕了它們以後,地球上生物的演化速度進入了相對穩定的狀態。

當然,光合生物的出現(當時主要是藍綠菌cyanobacteria)也造成大氣中二氧化碳(CO2)的減少,而氧氣的出現又使得甲烷(CH4)大量減少。這兩種溫室氣體的減少,使得地球在24億年前進入了長達三億年的休倫冰河期(Huronian glaciation)。在那三億年中,地球就像一個大冰球;等到休倫冰河期結束後,世界已經完全不同了。

由這裡,可以了解到光合作用對這個世界的影響有多大。近年來,因為石油、煤、天然氣等不可再生的能源都已經逐漸耗竭,科學家們又想到最便宜(基本上是不要錢)的能源--日光。

要怎麼利用日光呢?基本上來說,除了發展太陽能電池以外,其實也有許多科學家一直在想辦法模仿植物的光合作用;因為植物的光合作用不需要消耗礦產以及其他能源,只需要合成一些蛋白質,就可以在常溫下獲取日光的能量來合成有機分子。直接的產物是三碳糖(glyceraldehyde 3-phosphate),間接的產物是葡萄糖(glucose)與蔗糖(sucrose)。

而植物光反應中的OEC(oxygen evolving complex)更是引起研究者的興趣。到目前為止,OEC還是自然界唯一可以在常溫下分解水的蛋白質複合體(protein complex);如果可以將這個能力應用到發電上面,科學家們可以將光能轉變為氫氣,或是直接將光能轉換為化學能。

但是,要作這些需要對OEC有更多的了解。最近,亞利桑納州立大學(Arizona State University)的研究團隊,運用飛秒X光雷射(femtosecond X-ray laser),第一次看到了OEC的工作情形(1)。

過去對OEC的了解知道,這個蛋白質複合體中含有由四個錳離子(maganese ion, Mn2+)與一個鈣離子(calcium ion, Ca2+)組成的金屬核心(Mn4CaO5 metal cluster)。OEC與光系統II (Photosystem II)相連,每次光系統II接受一次光的刺激,OEC便提供一個電子給光系統II,而OEC自己便累積一價正電。這個正電荷由錳離子儲存,等到有四價正電時,OEC利用這四價正電,分解2個分子的水,產生一個分子的氧氣、四個氫離子(H+)以及四個電子(electron, e-)。

過去曾有研究團隊試圖以結晶的方式了解OEC。但是,觀察OEC的結晶結構並不能了解OEC的工作情形,而且有時光是結晶的過程就可能會對OEC的結構產生破壞,而這樣的結果只會誤導研究者。

這次,亞利桑納州立大學的研究團隊,使用了能源部的飛秒X光雷射來觀察OEC的動態。研究團隊觀察到,當OEC捐出了第二個電子給光系統II以後,它的金屬核心產生了變形的現象--具體來形容的話,就是金屬核心最外圍的錳離子與其他成員之間的距離拉長,使得第二個水分子可以進入OEC。

OEC在工作中會經歷五個狀態:S0, S1, S2, S3 與 S4。
黑框框顯示的是其中兩個時期的狀態。
圖片來源:ScienceDirect
同一時間,另一個在柏克萊的研究團隊(3)也使用了飛秒X光雷射,看到了由S3到S0的OEC變化狀態。

研究團隊們都希望,未來可以利用這個技術,逐步建立起整個OEC的工作動態;經過詳細了解OEC如何工作,可以幫助開發太陽能科技的研究團隊設計出更好的光電池。

參考文獻:

1. 2014/7/9. First snapshots of water splitting in photosynthesis -- ScienceDaily
2. Christopher Kupitz, Shibom Basu et. al., 2014. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature.
3. 2014/7/9. Postcards from the photosynthetic edge: Femtosecond snapshots of photosynthetic water oxidation -- ScienceDaily

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

光合作用的循環電子傳遞(cyclic electron flow)的調節

  圖片來源:維基百科 光合作用(photosynthesis)分為光反應(light reaction)與碳反應(Calvin-Benson cycle)。其中光反應為將陽光的光能轉換為化學能(ATP)與電子(NADPH)的過程。光能由光系統I或光系統II接收並轉換為電子進行傳遞,傳遞的過程中部分的能量被細胞色素b6f複合體(cytochrome b6f complex)擷取,提供植物將氫離子(H + ,proton)由葉綠體的基質(stroma)運輸到類囊體腔(thylakoid lumen)中,製造氫離子梯度(proton gradient),以提供ATP合成酶(ATP synthase)用來合成ATP;電子本身最後被傳送給NADP,產生NADPH用來在碳反應中做為還原電子使用。 上述的過程(稱為線性電子傳遞linear electron flow)並非光反應唯一會進行的反應。除了線性電子傳遞,植物也會進行所謂的循環電子傳遞(cyclic electron flow):電子在由光系統II→細胞色素b6f複合體 →光系統I之後,不將電子運送給Fd-NADP + 還原酶來產生NADPH,而是將電子送給一個Fd-PQ還原酶。由於接著Fd-PQ還原酶會把電子交還給細胞色素b6f複合體,所以被稱為循環電子傳遞。 循環電子傳遞到底有什麼樣的功能,目前還沒有定論。有些科學家認為植物用它來調節能量(ATP)與電子(NADPH)的產生比率,也有些科學家認為循環電子傳遞有保護植物免於被過量光能傷害的功能。不管怎麼說,近年來的研究卻發現了幾個基因與循環電子傳遞的調節有關。 第一個被發現的基因是 PGR5 (PGR=protein gradient)。缺少 PGR5 的阿拉伯芥無法形成氫離子梯度,也就是說 PGR5 為光反應所必須。但是 PGR5 長得一點都不像電子運輸蛋白,這就引起了科學家們的興趣。 後續的研究發現了另一個基因稱為 PGRL1 (PGR5-like 1)。研究團隊發現,缺少 PGRL1 會造成 PGR5 不穩定,但缺少 PGR5 並不會影響 PGRL1 的穩定性。 最近又發現了另一個基因 PGRL2 。研究團隊發現,缺少 PGRL2 對光合作用沒有影響,但是在植物中過量表現 PGRL2 會使 PGR5 的穩定性下降。同時缺少 PGRL2 與 PGRL1 的植...