跳到主要內容

植物微生物體:下一個綠色革命?

發生於二十世紀中期的綠色革命,包括了品種的改良與化學肥料的使用,使得農作物的產量大大上昇,相同面積的土地可以養活更多人。但是,依靠品種的改良,似乎已經走到了盡頭根據聯合國的估計,目前地球上的七十億人口中,有十億在飢餓狀態;面對日益增加的人口--在本世紀中葉將超過九十億--以及土地退化、土壤流失、氣候變遷等挑戰,我們要如何養活這麼多人呢?

最近有不同的研究團隊,都將眼光轉到過去沒有留意過的一個新領域:植物微生物體(Plant Microbiome)。近年來正在進行的人類微生物體計畫(The Human Microbiome Project )顯示了跟人類「同居」的微生物有幾十萬億。這些跟人類「同居」的微生物,影響我們的口味、代謝甚至心理狀態。過去對與植物「同居」的微生物的了解,僅限於根瘤菌(Rhizobium)以及一些與植物根部共生的真菌(Mycorrhizae)。現在,科學家們開始著手研究植物的微生物體,而且不僅僅是幾千億住在土壤中的微生物。植物的根、葉和花裡面各自住著大不相同的微生物群落,他們在遺傳上的多樣性可能是其寄主(植物)的數千倍甚至數十萬倍。植物的「微生物體」,很像人類微生物體,使植物更容易獲得養分,並有助於抑制疾病。科學家和農民都認為,了解植物微生物體會是農業的下一件大事。



在豆科植物根瘤(root nodule)中生活的根瘤菌
圖片來源:維基百科


Amanita屬真菌共生的根尖。圖片來源:維基百科


儘管人類從一萬多年前就開始種田,但是到最近才開始著手深入了解植物和微生物之間的相互作用。例如,北卡羅萊納大學教堂山分校(the University of North Carolina at Chapel Hill,)的植物免疫學家Jeff Dangl和他的同事最近發現,土壤中的細菌協助十字花科野生植物決定開花時間。該研究結果發表在六月的「生態學快報」(Ecology Letters)。而早在2012年,該團隊驚訝地發現,有很多鏈黴菌跟植物一起生活。鏈黴菌通常被用來合成抗生素,或許在植物體內是用來保護植物免受感染。Dangl博士的研究團隊認為,考慮到全球糧食需求增加這個面向,或許理解植物與微生物之間的親密關係,更重要貢獻的是可以提高農業生產力。


植物生技公司也這樣認為。在過去兩年裡,BASF、拜耳作物科學(Bayer CropScience)、Chr. Hansen、諾維信(Novozymes)、孟山都(Monsanto)和眾多的新設立的科技公司已在該領域投資了大約二十億的研究和開發經費。他們大多數正在從事所謂的生物製劑(biologicals),生物作物的輔助製劑(living crop aids)。例如,湯姆·約翰遜(Tom Johnson),最近把他的南達科他州的TJ技術公司賣給了諾維信,他們主要的成果是開發一種稱為「QuickRoots」的技術,可以將細菌和真菌塗在種子外層,藉以刺激根系生長。


比起傳統育種和基因改良,微生物的應用也可以更快地用於幫助植物擺脫疾病,以及減少肥料浪費。諾維信執行副總裁Thomas Videbæck說,該公司打算利用微生物技術來補充,而不是取代傳統方法。 任何一項技術都不可能是銀色子彈,但是,我們很快就會需要克服一切困難來產生雙倍的糧食,以養活九十億人。


參考資料:

2014/7/15.Untapped Plant Microbiome Could Help Feed Billions


留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

發光矮牽牛(petunia)即將於美國上市

  圖片來源: Nature 在1986年,第一株發光植物--發光的煙草( Nicotiana tabacum )問世了。那時候,就聽到有人說,或許有一天,我們可以讓路樹發光,那樣就不需要路燈,可以省下許多電費。 聽起來很棒,不是嗎? 今天的新聞提到,由 Light Bio公司 製造的「螢火蟲矮牽牛」(Firefly Petunia)即將在美國上市。事實上,美國本土48州已經可以預購了。 從發光煙草到螢火蟲矮牽牛,這條路走了將近40年。 對Light Bio的CEO與共同創辦人Keith Wood來說,這尤其意義非凡,因為他就是當初做出發光煙草的人。 但是,螢火蟲矮牽牛與發光煙草,完全是兩回事。 當初的發光煙草,是植入普通東方螢火蟲( Photinus pyralis )的冷光素酶(luciferase)。螢光素酶需要接觸到它的受質「冷光素」(luciferin),將冷光素氧化後才會發出冷光。所以,這樣的發光機制意味著,你要提供它冷光素,才會看到光。如果真想要把它拿來當作路燈,是非常不實用的。 不過,冷光素酶在生物科技上的應用非常廣泛。它被拿來當作所謂的「報告基因」(reporter gene)使用。科學家只要把相關基因的啟動子(promoter)後面接上冷光素酶的基因,就可以定量該啟動子在特定狀況下的表現量。 但是,對於想要看植物在黑暗中自己熠熠發光的人們來說,冷光素酶顯然不是選擇。 後來有從維多利亞多管發光水母( Aequorea victoria )中分離出來的綠色螢光蛋白(GFP,green fluorescent protein)。綠色螢光蛋白不需要受質,但是它需要光的刺激:395 nm和475 nm分別是最大和次大的激發波長。所以,要它發光,要額外提供給它395 nm的光波。這也是為什麼,之前曾經引起一波熱潮的螢光魚,需要購買特殊的燈管。 自然界會發出冷光或螢光的,也並不只限於螢火蟲與水母。還有一大群蕈類,也會發出螢光。即將上市的螢火蟲矮牽牛,其實是植入了小皮傘科(Marasmiaceae)的 Neonothopanus nambi 的整條螢光途徑。這個基因需要咖啡酸(caffeic acid)作為受質,不過植物本來就會合成咖啡酸,所以不是什麼大問題。 2023年9月,美國農業部核准了螢火蟲矮牽牛上市。為了要通過審查,Light