跳到主要內容

光敏素(phytochrome)的故事(二)

前面提到,對於菸草的研究,讓加納與阿拉德開始懷疑,是外界的刺激影響到菸草的花期;當時有另一種植物也引發了他們的興趣:大豆。

由Mooers在1908年發表的論文提到,不管何時種下大豆,它都在固定的日期開花;當加納試著將大豆種在冬天有暖氣的溫室裡時,他們很驚訝的發現,大豆一下子就開花了。

這代表,對於大豆的花期來說,溫度不大重要;但是冬天不只是光照的時間不夠,光的強度也變低很多。所以,到底是光的強度還是光照時間重要呢?

加納與阿拉德注意到被薄布(cheesecloth)蓋住的植物也在同時間開花--所以,這代表著可能是光照時間比較重要吧。也就是說,如果可以成功控制光照長度,應該可以調整植物的花期。

於是就開始了令人腰酸背痛的實驗。如果是在二十一世紀的現代,我們只需要定時器來控制燈的開關;可惜當時還沒有這種設備。所以,阿拉德只好蓋了個類似「狗屋」的房子作為暗房。

阿拉德的暗房。圖片來源:美國農業部1920年年報
暗房有空調,但是沒有窗戶。植物一旦放進去了以後,拉上門,就沒有光了。

從1918年7月10日下午四點開始,阿拉德帶著一箱正在開花的北京種大豆(Peking soybean)與三盆新種菸草進去「狗屋」裡。第二天早上九點,他再把他們拿出來。就這樣,每天上午九點、下午四點,他重複著這個工作,讓植物每天只照射7小時光照。在七月的Arlington(美國農業部實驗室所在地),每天日照的時間超過14小時。每天每天,阿拉德都來搬植物兩趟,週末也不例外。

實驗的結果呢?

新種菸草終於開始開花、結子了!而大豆在不到兩週的時間,豆莢都長大、接近成熟了。相對的,擺在外面接受14小時光照的控制組,豆莢都才剛剛長出。再兩週以後(也就是實驗開始一個月),大豆的豆莢已然成熟,葉片枯黃掉落;但控制組的豆莢都還是綠的。

於是,世界上頭一遭,植物光週期的秘密被發現了。很快的,加納與阿拉德也意識到,日照週期比起降雨、溫度、土壤肥份等因素,其實是最穩定的外界刺激來源。

加納與阿拉德於1920年發表的研究,刊載於「農業研究期刊」。
圖片擷取自:美國農業部

加納與阿拉德在1920年於「農業研究期刊」(Journal of Agricultural Research)發表了他們的研究,並第一次使用「光週期」(photoperiodism)這個字來描述生物因為晝夜長度的比例所產生的反應。他們同時也認為,光週期應該不只是影響植物,還會影響動物。這個說法,很快就在1922年在昆蟲裡發現了。1926年,鳥類學家羅文(Rowan)也發表了光週期對鳥類的影響。

不過,本文照片裡的暗房,其實已經不是原來的「狗屋」了;為了要發表,加納與阿拉德在1919年做了更多的實驗。這次他們加入了三種大豆、兩種菸草、秘魯與玻利維亞來的豆子、小紅蘿蔔(radish)、胡蘿蔔、萵苣、高麗菜等等...所以原來的「狗屋」已經裝不下這麼多植物了!同時,加納也不需要再「斷背」,只要用車子把植物拖出拖進就好(筆者按:還是很累啊!)。結果發現,密西西比種的大豆,在七小時光照、十四小時黑暗下,26天就開花;但是在十四小時光照、七小時黑暗下,卻要110天就開花。而新種菸草在七小時光照、十四小時黑暗下,也提早開花了。來自秘魯與玻利維亞的豆類也有相同的情形。相對的,小紅蘿蔔、鳶尾花、大波斯菊、菠菜等,在十四小時光照、七小時黑暗下,可以提早開花。

於是,加納與阿拉德也提出了「長日照植物」(LDP,Long Day Plant)與「短日照植物」(SDP,Short Day Plant)這兩個名詞,來描述植物對日照長度所產生的反應。

不過,大家都知道,後來發現「長日照植物」與「短日照植物」真正的關鍵不是日照長度,而是連續黑夜的長度。這部分,又是怎麼發現的呢?這就要把時間列車再往現代走,來到1938年的夏天了....

參考文獻:

Linda C. Sage. 1992. Pigment of the Imagination :A History of Phytochrome Research. Academic Press. ISBN. 0-12-614445-1

留言

這個網誌中的熱門文章

植物是地球的能量工廠

地球上最重要的反應應該就是光合作用(photosynthesis)了,就如植物的頂芽生長點是地球上最重要的組織一般。這是由於地球上的異營生物無不依靠自營生物作為直接或間接的食物來源,而自營生物的養分幾乎都是由光合作用而來。
葉片是獲取能量的小尖兵
自營生物的器官衰老是非常複雜的機制。在秋天撿起一片地上的黃葉,與仍在樹梢上翠綠的葉子相比,會發現黃葉的重量較同等大小的綠葉輕很多;這是因為植物會將衰老葉片中剩餘的、可利用的物質分解後運回,提供其他組織再運用。不若異營生物,由於每一個器官、組織都需要由自己生產的能量來製造,因此自營生物在淘汰老廢器官與組織時,一定會將殘餘的養分盡可能的回收。汰舊換新對所有生物都是一整年的工作,但對於多年生的落葉樹來說,每年春秋二季會發生大規模的迎新去舊,是它們一年兩次的大工程。
當時序慢慢進入秋天時,植物體內可藉由光敏素(phytochrome)感應逐漸加長的黑夜。光敏素是由兩個多肽組成的雙體(dimer),每個多肽有一千多個氨基酸那麼長,並加上一個色素分子(phytochromobillin)。光敏素將季節的信息送到頂芽,頂芽便開始進入休眠;其它的葉片啟動衰老機制、將可以回收的養分盡量回收之後,隨著連接葉柄與莖的薄壁細胞死亡,毫無生氣的葉片因自己重量的垂墜,被拉離開植株,飄落到地面。
這一切雖然看似與光合作用無關,但它卻是背後的影武者。在夏季的尾聲,隨著日照時間減少,植物能進行光合作用的時間縮短;同時,因為太陽的角度逐漸偏斜,在有限時間內,植物能捕捉到的光能也逐漸減少。以經濟的角度來看,光合自營生物此時若仍維持著龐大數量的葉片,並不是一種聰明的做法;於是有些樹木選擇將葉片中的養分回收儲存,同時降低所有的活動來過冬。等到冬去春來,可進行光合作用的時間變長了,加上太陽的角度逐漸轉正,植物以光敏素覺察到黑夜時間逐漸縮短,新芽便開始萌發,葉綠素的合成與葉綠體的發育,讓新生的葉片抹上了一層層的綠意。
由此可知,光合作用需要捕捉光能、以及將光能轉換為化學能的「用具」,並且,這些用具要能夠被恰當地放置在可以接收到足夠光能的地方。除了少數因為生活環境而必須修改基本設計的植物以外,絕大多數植物執行光合作用的主要部位是葉片;而葉片中用來捕捉光能的用具就是光系統(photosystem)。
抽絲剝繭光系統的運作
在葉綠體的類囊體膜(stromal membrane)上,可以…

孔雀秋海棠的光合作用魔術

原產於馬來西亞雨林的孔雀秋海棠(Begonia pavonina),只有在光線極弱的狀況下葉片會出現藍色。當光線夠強的時候,葉片上的藍色就不會出現了。

因為這藍色是如此的美麗,使它得到了「孔雀秋海棠」(peacock begonia)的美名。大家搶著種它,想要看到那美麗的孔雀藍;但到底為什麼要出現這美麗的孔雀藍呢?

通常我們都認為,在葉片裡面除了葉綠素以外的光合色素,都是輔助色素:在光線不夠時,幫忙吸收更多光能;在光線太強時,把多餘的能量發散。所以孔雀秋海棠的孔雀藍,是否也是一種輔助色素呢?

之前的研究已經發現,這些孔雀藍,應該是來自於被稱為虹彩體(iridoplast)的一種色素體(plastid)。虹彩體位於葉片上表皮的細胞中,為葉綠體的變體。在最近的研究發現,這些虹彩體的類囊體(thylakoids)以一種不尋常的方式排列:每疊葉綠餅(grana)由三到四個類囊體組成,厚度約為40奈米;而一疊一疊的葉綠餅之間的距離約為100奈米。


一般的葉綠體,通常葉綠餅的排列是散亂的(如圖);孔雀秋海棠的虹彩體的葉綠餅卻排得如此整齊,有什麼作用呢?

研究團隊測量了20個虹彩體,發現它們的特殊構造賦予它們反射435~500奈米的光波的能力。這個波長正好就是藍光波段的最右邊,與綠光交界的位置。這就是為什麼孔雀秋海棠是藍色的原因吧!

不過,這些虹彩體不只是會反射藍光而已。研究團隊還發現,虹彩體讓孔雀秋海棠吸收較長波的綠光與紅光的能力提升了!這對孔雀秋海棠是非常重要的,因為它們通常在熱帶雨林的地面上生長。

在熱帶雨林裡,光線都被大樹給遮住了,使得地表的光線極弱。弱到怎樣的地步呢?大約是樹冠光線強度的百萬到千萬分之一喔!而且還不只是光線變弱而已,因為雨林中的大樹們把進行光合作用所需的兩個主要波段的光(460奈米與680奈米)都吸收得差不多了,在這樣的環境下,孔雀秋海棠如果不發展出吸收一點綠光的本事,還真的會混不下去。

事實上,因為這些特殊的構造,虹彩體比一般的葉綠體進行光合作用的效率更高。研究團隊藉著測量葉綠體的螢光(葉綠體進行光合作用時,一部份的葉綠素會把吸收的光以暗紅色的螢光發射出去;所以可以藉著測量螢光了解植物進行光合作用的效率)發現,虹彩體進行光合作用的效率,比一般的葉綠體都好。不過,當光線變強的時候,虹彩體的效率就沒有那麼好了;這或許就是為何,當我們把孔雀秋海棠種在光線…

【原來作物有故事】鳳梨 漂洋過海在臺灣發揚光大

作者:葉綠舒、王奕盛、梁丞志

在台灣提到鳳梨,一定會想到鳳梨酥這代表台灣的伴手禮。但是鳳梨其實不是台灣原產的水果喔!鳳梨原產於熱帶南美洲,在哥倫布1493年的第二次航行時於瓜德羅普的村莊中發現後引進歐洲,約於16世紀中葉傳入中國;台灣則是在1605年先由葡萄牙人引進澳門,再由閩粵傳入台灣,至今已有三百多年歷史。

在台灣,鳳梨因為台語諧音「旺來」很吉利而廣受大眾喜愛,但其實鳳梨的名字是根據它果實的型態來的,因為果實的前端有一叢綠色的葉片,讓以前的人覺得很像鳳尾,加上果肉的顏色像梨,所以就取名為「鳳梨」。至於英文的名稱也是因為果實的外型像毬果、而肉質香甜,所以就被取名為「松蘋果」(pineapple)啦!其實鳳梨果實的毬果狀的外觀主要是因為鳳梨是「聚合果」,每顆鳳梨是由200朵鳳梨花集合而成的!而它的學名Ananas則是來自於圖皮語,意思是很棒的水果。

在哥倫布把鳳梨引進歐洲以後,因為它的香甜好滋味讓它大受歡迎;但是身為熱帶水果的鳳梨,在溫帶的歐洲長得並不好!為了要讓王公貴族們吃到鳳梨,十六世紀的園丁們發明了「鳳梨暖爐」:把單顆鳳梨放在由馬糞堆肥做的暖床上的木製棚架,並升起爐火來保持溫暖,好讓鳳梨這熱帶植物可以在溫帶的歐洲開花結果;世界上第一個溫室就這樣誕生了,並由此開啟了歐洲建造溫室的熱潮!

鳳梨不只是改變了歐洲,在日本人到台灣後,嚐到了鳳梨的香甜滋味,便開始推動鳳梨產業。1903年,岡村庄太郎於鳳山設置岡村鳳梨工廠,生產鳳梨罐頭;後來逐漸形成中部以員林、南部以鳳山為中心的鳳梨生產體系。在1938年時,鳳梨罐頭工廠女工竟然佔了全台灣女性勞動人數三分之一以上呢!光復以後台灣的鳳梨產業也曾在1971年登上世界第一,讓台灣被稱為「鳳梨王國」。但是後來不敵其他國家的競爭,已經由外銷罐頭改為多以內銷鮮食鳳梨為主的型態了。

從清朝、日治時代直到現在,台灣的鳳梨品系一直都一樣嗎?當然不是囉!最早的鳳梨被稱為「在來種」,後來日治時代為了製作罐頭方便,從夏威夷引進了開英種;到了1980年以後,因為罐頭外銷敵不過競爭,台灣的鳳梨改為內銷且以鮮食為主,為了挽救鳳梨產業,農改場、農試所便培育出各種不同適合鮮食的鳳梨:包括不用削皮可以直接剝來吃的釋迦鳳梨(台農4號),最適合在秋冬生產的冬蜜鳳梨(台農13號),有特殊香氣的香水鳳梨(台農11號),以及因為果肉乳白色被稱為牛奶鳳梨的台農20號等…