跳到主要內容

在家合成鴉片可能嗎?

鴉片(opium)是鴉片罌粟(Papaver somniferum)蒴果的分泌物乾燥後的成品。

鴉片罌粟的花。圖片來源:wiki
或粉紅、或白的罌粟花,花瓣落盡後蒴果形成;工人一般在黃昏採收(1),用刀子割破蒴果。蒴果的乳白色汁液在夜晚滲出、凝結,因氧化作用轉為褐色。

鴉片罌粟的蒴果與乳汁。圖片來源:wiki
第二天,工人小心的剝下褐色乾燥的片狀物,曬乾或陰乾後,就是鴉片。

鴉片是混合物,裡面的主要成分是嗎啡(morphine),另外還有可待因(codeine)與蒂巴因(thebaine)。

嗎啡。圖片來源:wiki
嗎啡在十九世紀初(1803-1805年間)由賽特內爾(Friedrich Sertürner)分離出來;在1827年由默克(Merck)將它商品化。嗎啡的出現,加速了醫療上這類的產品的使用。過去只有鴉片可用的時代,因為容易摻混、造假,造成在治療上使用的困難;現在有了純物質,醫生在控制劑量上變得容易許多。等到1853年伍德(Alexander Wood)發明皮下注射嗎啡後,嗎啡的使用量與範圍變得更廣。

從十九世紀到現在,化學合成技術的進步已經使許多天然化合物可以在實驗室中合成;但是,鴉片中的任何成分,嗎啡也好、可待因、蒂巴因也好,還是都要依賴鴉片罌粟為我們生產。合成它們,是那麼的困難嗎?

其實在1952年,嗎啡的化學合成便已經由Marshall D. Gates, Jr.完成了。要合成嗎啡,總共需要31個步驟,總產量大約只有0.06%。後來在1980年,由Kenner C. Rice以不同的化合物為原料,只用了14個步驟就合成了嗎啡,總產量達到30%(2)。

後來也有許多不同的實驗室想要改進製程。由於不論是Gates、Rice或是其他的研究團隊,都找不到方法由簡單的化合物開始合成,造成在實驗室中合成嗎啡的成本,比種植罌粟後提取要高;因此這些年來,還是無法放棄罌粟的種植。

既然化學合成這條路似乎不大通,有些研究團隊就開始想利用單細胞生物(細菌、酵母菌)了。過去對罌粟的研究發現,植物可以由酪氨酸(tyrosine)先合成多巴胺(dopamine)與4-HPAA,再進一步合成(S)-Norcoclaurine,接著往下合成(S)-reticuline,然後產生蒂巴因、可待因與嗎啡。

若要使細菌/酵母菌為我們合成嗎啡等化合物,研究團隊需要把這整條路徑上的酵素都一一選殖出來,並將它們放進酵母菌或細菌中。但是植物是真核生物,真核生物的蛋白質常常會有一些不一樣的修飾(modification,發生在高基氏體中),這些修飾的機制在原核生物(細菌)之中經常如附闕如!因此,雖然過去有研究團隊已經可以讓大腸桿菌以甘油(glycerol)製造出中間產物(R,S)-Norlaudanosoline,最後大家還是把眼光放向酵母菌(S. cerevisiae,啤酒酵母)。

加拿大Concordia大學的馬丁教授(Vincent J. J. Martin)的研究團隊,已經在這個題目上鑽研了非常久。2014年他發表了由(R,S)-Norlaudanosoline到中游的dihydrosanguinarine的合成;而另一個研究團隊也在去年發表了由中游到嗎啡在酵母菌中的合成。今年,馬丁教授的團隊再接再厲,將由(R,S)-Norlaudanosoline到中游的(S)-reticuline的所有酵素放到酵母菌中,並順利產生產物:(S)-reticuline(3)。

到了這一步,事實上要用酵母菌合成嗎啡、可待因、蒂巴因可以說只差臨門一腳了。那一腳呢?原來,由(S)-reticuline到(R)-reticuline還需要三個酵素,而這三個酵素目前還沒有人選殖出來。

一旦選殖出來,並成功在酵母菌中表現後,或許未來要合成嗎啡等化合物,再也不需要種植罌粟;只需要拿出酵母菌,培養若干時間後就可以得到了!

當然,政府機關一定會擔心,因此未來可能會給這些菌株加上可以辨識的遺傳標記,萬一不小心流出才知道是誰搞鬼;另外,應該也會讓這些酵母菌缺少合成某種特別的養分的基因,如此一離開實驗室便無法存活,才能令人放心吧!

其實,在田裡種罌粟也不是沒有危險,在澳洲的塔斯馬尼亞島上的藥用罌粟田,就常常有上癮到不能自拔的小袋鼠(wallaby)闖進田裡過癮呢(4)!

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

1. Toby Musgrave and Will Musgrave. 2008. 植物帝國:七大經濟綠寶石與世界權力史。序曲文化。

2. Wikipedia. Total synthesis of morphine and related alkaloids.

3.Elena Fossati, Lauren Narcross, Andrew Ekins, Jean-Pierre Falgueyret, Vincent J. J. Martin. 2015. Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae. PLOS One. DOI: 10.1371/journal.pone.0124459.

4. Barbara Natterson-Horowitz and Kathryn Bowers. 2013. 共病時代:醫師、獸醫師、生態學家如何合力對抗新世代的健康難題。臉譜出版。

留言

這個網誌中的熱門文章

為什麼「種豆南山下,草盛豆苗稀」?

陶淵明在「歸園田居」詩中,曾經提到「種豆南山下,草盛豆苗稀」。這首詩大家都很熟了,也是很受歡迎的國文教材,但是,有多少人認真去想為什麼「草盛豆苗稀」呢?難道只是因為陶淵明不會種田嗎?

雖然根據歷史的記載,「歸園田居」可能真的就是在他剛隱居的時候寫的(1);而在那時候,可能他的耕種技術也的確是還有待提升;不過筆者卻認為,從生物學的角度來看,「草盛豆苗稀」也不全是耕種技術的問題。

首先,我們來看一下氣候。陶淵明隱居的地點在潯陽柴桑,也就是現在的江西省九江市星子縣。當地是北緯29.44度,在北回歸線以北,屬於濕潤型亞熱帶氣候(2),1971-2000的年平均溫度為攝氏17.03度,每年四月就不再有攝氏零度以下的低溫(3)。雖然還是比臺灣偏北(台北市是北緯25.02度),大致上還是屬於溫和的氣候,植物的種類應該也不會相差太多。即使考慮近年來全球暖化的問題,應該也不會超過攝氏一度(4)。

在亞熱帶的台灣,夏天通常並不是植物茂盛生長的時期。為什麼呢?因為世界上90%的陸生植物是C3植物,這些植物在氣溫超過攝氏30度時,會因為光呼吸作用(photorespiration)造成水分的消耗大量上昇。C3植物(如大豆)在攝氏30度時,每抓一個二氧化碳分子就要消耗833個水(5),於是植物的生長速度就開始變慢。

不過,並不是所有的植物在夏天時生長速度都會變慢唷!有些植物,如玉米、甘蔗等,反而在夏天時長得特別好。為什麼呢?

原來玉米與甘蔗是所謂的C4植物,它們既耐熱又耐旱,跟C3植物比較起來,在攝氏30度時C4植物每抓一個二氧化碳的分子只消耗277個水(5),所以夏天的時候,它們的生長速度ㄧ點都不受影響呢!
說到這裡,讀者可能會想:什麼是C4植物?為什麼它們能夠既耐熱又耐旱呢?
所謂的C3、C4植物,指得是它們在光合作用上的不同。C3植物進行光合作用時,是由卡爾文循環(Calvin cycle)的酵素(RuBisCo,如圖二)直接抓取溶解在細胞中的二氧化碳,與核酮糖1,5-二磷酸(ribulose 1,5-bisphosphate,RuBP)進行反應;


而C4植物則在卡爾文循環上面,又增加了幾個步驟,而且這幾個步驟還跟卡爾文循環在不同的組織中進行呢(如圖三)!為什麼會這樣呢?


原來,C4植物多半都生活在亞熱帶或熱帶,在這些氣候區,植物進行光合作用時,會遇到一個大問題。

這個問題來自於卡爾文循環的第…

孔雀秋海棠的光合作用魔術

原產於馬來西亞雨林的孔雀秋海棠(Begonia pavonina),只有在光線極弱的狀況下葉片會出現藍色。當光線夠強的時候,葉片上的藍色就不會出現了。

因為這藍色是如此的美麗,使它得到了「孔雀秋海棠」(peacock begonia)的美名。大家搶著種它,想要看到那美麗的孔雀藍;但到底為什麼要出現這美麗的孔雀藍呢?

通常我們都認為,在葉片裡面除了葉綠素以外的光合色素,都是輔助色素:在光線不夠時,幫忙吸收更多光能;在光線太強時,把多餘的能量發散。所以孔雀秋海棠的孔雀藍,是否也是一種輔助色素呢?

之前的研究已經發現,這些孔雀藍,應該是來自於被稱為虹彩體(iridoplast)的一種色素體(plastid)。虹彩體位於葉片上表皮的細胞中,為葉綠體的變體。在最近的研究發現,這些虹彩體的類囊體(thylakoids)以一種不尋常的方式排列:每疊葉綠餅(grana)由三到四個類囊體組成,厚度約為40奈米;而一疊一疊的葉綠餅之間的距離約為100奈米。


一般的葉綠體,通常葉綠餅的排列是散亂的(如圖);孔雀秋海棠的虹彩體的葉綠餅卻排得如此整齊,有什麼作用呢?

研究團隊測量了20個虹彩體,發現它們的特殊構造賦予它們反射435~500奈米的光波的能力。這個波長正好就是藍光波段的最右邊,與綠光交界的位置。這就是為什麼孔雀秋海棠是藍色的原因吧!

不過,這些虹彩體不只是會反射藍光而已。研究團隊還發現,虹彩體讓孔雀秋海棠吸收較長波的綠光與紅光的能力提升了!這對孔雀秋海棠是非常重要的,因為它們通常在熱帶雨林的地面上生長。

在熱帶雨林裡,光線都被大樹給遮住了,使得地表的光線極弱。弱到怎樣的地步呢?大約是樹冠光線強度的百萬到千萬分之一喔!而且還不只是光線變弱而已,因為雨林中的大樹們把進行光合作用所需的兩個主要波段的光(460奈米與680奈米)都吸收得差不多了,在這樣的環境下,孔雀秋海棠如果不發展出吸收一點綠光的本事,還真的會混不下去。

事實上,因為這些特殊的構造,虹彩體比一般的葉綠體進行光合作用的效率更高。研究團隊藉著測量葉綠體的螢光(葉綠體進行光合作用時,一部份的葉綠素會把吸收的光以暗紅色的螢光發射出去;所以可以藉著測量螢光了解植物進行光合作用的效率)發現,虹彩體進行光合作用的效率,比一般的葉綠體都好。不過,當光線變強的時候,虹彩體的效率就沒有那麼好了;這或許就是為何,當我們把孔雀秋海棠種在光線…

【原來作物有故事】鳳梨 漂洋過海在臺灣發揚光大

作者:葉綠舒、王奕盛、梁丞志

在台灣提到鳳梨,一定會想到鳳梨酥這代表台灣的伴手禮。但是鳳梨其實不是台灣原產的水果喔!鳳梨原產於熱帶南美洲,在哥倫布1493年的第二次航行時於瓜德羅普的村莊中發現後引進歐洲,約於16世紀中葉傳入中國;台灣則是在1605年先由葡萄牙人引進澳門,再由閩粵傳入台灣,至今已有三百多年歷史。

在台灣,鳳梨因為台語諧音「旺來」很吉利而廣受大眾喜愛,但其實鳳梨的名字是根據它果實的型態來的,因為果實的前端有一叢綠色的葉片,讓以前的人覺得很像鳳尾,加上果肉的顏色像梨,所以就取名為「鳳梨」。至於英文的名稱也是因為果實的外型像毬果、而肉質香甜,所以就被取名為「松蘋果」(pineapple)啦!其實鳳梨果實的毬果狀的外觀主要是因為鳳梨是「聚合果」,每顆鳳梨是由200朵鳳梨花集合而成的!而它的學名Ananas則是來自於圖皮語,意思是很棒的水果。

在哥倫布把鳳梨引進歐洲以後,因為它的香甜好滋味讓它大受歡迎;但是身為熱帶水果的鳳梨,在溫帶的歐洲長得並不好!為了要讓王公貴族們吃到鳳梨,十六世紀的園丁們發明了「鳳梨暖爐」:把單顆鳳梨放在由馬糞堆肥做的暖床上的木製棚架,並升起爐火來保持溫暖,好讓鳳梨這熱帶植物可以在溫帶的歐洲開花結果;世界上第一個溫室就這樣誕生了,並由此開啟了歐洲建造溫室的熱潮!

鳳梨不只是改變了歐洲,在日本人到台灣後,嚐到了鳳梨的香甜滋味,便開始推動鳳梨產業。1903年,岡村庄太郎於鳳山設置岡村鳳梨工廠,生產鳳梨罐頭;後來逐漸形成中部以員林、南部以鳳山為中心的鳳梨生產體系。在1938年時,鳳梨罐頭工廠女工竟然佔了全台灣女性勞動人數三分之一以上呢!光復以後台灣的鳳梨產業也曾在1971年登上世界第一,讓台灣被稱為「鳳梨王國」。但是後來不敵其他國家的競爭,已經由外銷罐頭改為多以內銷鮮食鳳梨為主的型態了。

從清朝、日治時代直到現在,台灣的鳳梨品系一直都一樣嗎?當然不是囉!最早的鳳梨被稱為「在來種」,後來日治時代為了製作罐頭方便,從夏威夷引進了開英種;到了1980年以後,因為罐頭外銷敵不過競爭,台灣的鳳梨改為內銷且以鮮食為主,為了挽救鳳梨產業,農改場、農試所便培育出各種不同適合鮮食的鳳梨:包括不用削皮可以直接剝來吃的釋迦鳳梨(台農4號),最適合在秋冬生產的冬蜜鳳梨(台農13號),有特殊香氣的香水鳳梨(台農11號),以及因為果肉乳白色被稱為牛奶鳳梨的台農20號等…