跳到主要內容

製作尿素(urea)的新方法

尿素。圖片來源:維基百科
尿素是很重要的氮肥。全世界產生的氨(ammonia)有八成用來合成尿素,而用來合成氨的哈伯法(the Haber-Bosch process)需要在攝氏五百度下加壓(20 MPa)。

傳統合成尿素的方法是用氨與二氧化碳在攝氏兩百度下加熱。若與哈伯法一起計算,每年全世界為了合成尿素要消耗掉百分之二的能源,過程中還釋放了大量的溫室氣體。

最近中國湖南大學的研究團隊開發了一個新的方法,可以在室溫常壓下,在水裡以氮氣與二氧化碳直接合成尿素。

反應在流動反應器池中進行,池中包含由載有催化劑的碳紙製成的陰極和鎳基陽極。電極由膜隔開,位於裝有碳酸氫鉀水溶液的腔室內。研究人員將氮氣和二氧化碳送通過電池,以使兩種氣體均吸附在催化劑上並反應生成尿素。催化劑則是由二氧化鈦奈米片上的鈀-銅奈米粒子組成。

在催化劑表面,氮氣促進了二氧化碳的還原,生成一氧化碳。然後,一氧化碳與氮氣反應生成一些中間物種。一氧化碳與這些中間體之間的進一步相互作用使氮氣氫化並形成碳-氮鍵,從而產生尿素。

該系統的效率(可衡量生產尿素的電力份額)約為9%。雖然該反應的效率和生產率仍然很低,要使其實用化還有很長的路要走,但是這還是提供了小規模生產尿素的可能性,可以讓更多國家有能力生產它。

尿素在1824年第一次由德國化學家弗里德里希·維勒(Friedrich Wöhler,1800-1882)以氰酸中加入氨水後蒸乾合成出來。當時他並不知道這個化合物是什麼,直到1828年證明了這些白色晶體就是尿素。尿素的人工合成打破了當時人們的一個迷思:有機化合物不能以人工合成。這個反應被認為開啟了有機化學這個領域。

參考文獻:

Nat. Chem. 2020, DOI: 10.1038/s41557-020-0481-9

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

光合作用的循環電子傳遞(cyclic electron flow)的調節

  圖片來源:維基百科 光合作用(photosynthesis)分為光反應(light reaction)與碳反應(Calvin-Benson cycle)。其中光反應為將陽光的光能轉換為化學能(ATP)與電子(NADPH)的過程。光能由光系統I或光系統II接收並轉換為電子進行傳遞,傳遞的過程中部分的能量被細胞色素b6f複合體(cytochrome b6f complex)擷取,提供植物將氫離子(H + ,proton)由葉綠體的基質(stroma)運輸到類囊體腔(thylakoid lumen)中,製造氫離子梯度(proton gradient),以提供ATP合成酶(ATP synthase)用來合成ATP;電子本身最後被傳送給NADP,產生NADPH用來在碳反應中做為還原電子使用。 上述的過程(稱為線性電子傳遞linear electron flow)並非光反應唯一會進行的反應。除了線性電子傳遞,植物也會進行所謂的循環電子傳遞(cyclic electron flow):電子在由光系統II→細胞色素b6f複合體 →光系統I之後,不將電子運送給Fd-NADP + 還原酶來產生NADPH,而是將電子送給一個Fd-PQ還原酶。由於接著Fd-PQ還原酶會把電子交還給細胞色素b6f複合體,所以被稱為循環電子傳遞。 循環電子傳遞到底有什麼樣的功能,目前還沒有定論。有些科學家認為植物用它來調節能量(ATP)與電子(NADPH)的產生比率,也有些科學家認為循環電子傳遞有保護植物免於被過量光能傷害的功能。不管怎麼說,近年來的研究卻發現了幾個基因與循環電子傳遞的調節有關。 第一個被發現的基因是 PGR5 (PGR=protein gradient)。缺少 PGR5 的阿拉伯芥無法形成氫離子梯度,也就是說 PGR5 為光反應所必須。但是 PGR5 長得一點都不像電子運輸蛋白,這就引起了科學家們的興趣。 後續的研究發現了另一個基因稱為 PGRL1 (PGR5-like 1)。研究團隊發現,缺少 PGRL1 會造成 PGR5 不穩定,但缺少 PGR5 並不會影響 PGRL1 的穩定性。 最近又發現了另一個基因 PGRL2 。研究團隊發現,缺少 PGRL2 對光合作用沒有影響,但是在植物中過量表現 PGRL2 會使 PGR5 的穩定性下降。同時缺少 PGRL2 與 PGRL1 的植...

吃太多光果甘草(liquorice)會有不良作用

  光果甘草。圖片來源: 維基百科 。 光果甘草(liquorice, Glycyrrhiza glabra )又稱為洋甘草,為豆科甘草屬下的一個種,在中國、西亞與南歐都有分布。一般人們會取它的根來製作糖果,在歐美蠻受歡迎的。英文名稱liqurice來自於希臘文的 glycyrrhiza ,意思就是「甜的根」:「 glukus 」意為「甜」,「 rhiza 」意為「根」。它也是中藥甘草的一種,乾燥的根及根莖性味偏涼,加工(蜜炙)後則性味偏溫,各有不同功效。 光果甘草除了可以用來製作糖果,也用於傳統醫學與草藥學。但是光果甘草含有甘草酸(Glycyrrhizin 或 glycyrrhizic acid),如每日每公斤體重服用超過2毫克(2 mg/kg/day)可導致低血鉀、血壓上升、肌肉無力等症狀。 最近發表在《新英格蘭醫學雜誌》上的 一篇文章 提到,一位54歲的建築工人,因為每天吃一包半的光果甘草糖,連吃了幾個星期,結果死於突發的心臟驟停(cardiac arrest)。 醫師認為他的死亡與甘草酸有關。甘草酸是一種皂素(saponin),屬於植物的次級代謝物,由一分子的甘草次酸(glycyrrhetinic acid)與兩分子的葡萄糖醛酸(Glucuronic acid)組成。 甘草糖。圖片來源: 維基百科 。 雖然醫師認為他的死亡與食用大量的甘草糖脫不了關係,但醫師也注意到死者的飲食並不健康。他一向吃很多糖,只是最近幾週改吃甘草糖。 光果甘草與中藥的甘草( G. uralensis )是近親,兩者同屬不同種。中藥的甘草也含有甘草酸,幸好華人文化裡並沒有把甘草做成糖果的習慣,所以應該不會發生甘草酸中毒的情形。 補充:2020/10/10發現了一個影片,裡面提到這個病例以及甘草酸致死的機轉:因為甘草酸的結構跟皮質醇(cortisol)很像,所以會引發類似的效應。 影片裡面提到,現在在美國要買到真的liquorice其實並不容易,大部分都是人工甘味...所以這位仁兄真的很厲害可以買到真的liquorice。 2022/04/07:最近有一篇研究報告提到,甘草酸與甘草次酸有抗癌的活性,而且還能抑制SARS-CoV2的複製。看起來很有趣,但考慮到甘草酸與甘草次酸的毒性,似乎還是要小心使用比較好。 參考文獻: Case 30-2020: A 54-Year-Old ...