跳到主要內容

如何做出營養又美味的菇菇料理

各種不同的可食蕈類。圖片來源:Wiki

屬於真菌門的蕈類(mushrooms),或者說菇類,是餐桌上常見的料理。人類吃蕈類的歷史可以追溯到公元前數百年的中國,而考古的發現可再向前推到紀元前一千三百年的智利。在台灣的市場,很容易可以看到十幾種不同的蕈類在貨架上販售;至於藥用的真菌也不少,如馬勃、豬苓、茯苓、冬蟲夏草等。

撇開藥用真菌不提,大家愛吃什麼樣的菇菇呢?市面上很受歡迎的有木耳(Auricularia sp.)、洋菇(Agaricus bisporus )、金針菇(Flammulina velutipes (Fr.) Sing.)、香菇(Lentinula edodes )、蠔菇(Pleurotus ostreatus )、杏鮑菇(Pleurotus eryngii )、草菇(Volvariella volvacea)等。蕈類高纖維低脂肪,又含有維生素B、C、D、E、蛋白質、多醣體,是很理想的食物,除了痛風病人因為蕈類普林(purine)含量較高、腎臟病患者因有些蕈類含鉀較多不宜多吃以外,大部分的人遇到蕈類都可以放心地開懷大嚼。

要怎麼烹調蕈類呢?筆者查詢網站,發現菇類食譜竟然有一千多道!在台灣很受歡迎的有三杯杏鮑菇、香菇雞、酥炸蠔菇/金針菇等,不過,到底要怎樣吃,才能從菇菇們得到較多的養分呢?最近的研究顯示,烤或是微波爐加熱,應該是最能夠保存菇菇們養分的烹調方式喔!

為了瞭解不同烹調方式對蕈類養分的影響,研究團隊挑了洋菇、香菇、蠔菇、杏鮑菇,比較油炸、水煮、烤與微波爐加熱這四種方式烹調後,這些蕈類的養分變化。

他們發現,雖然炸蠔菇很香很好吃,但是油炸會使蕈類含有的碳水化合物、蛋白質、抗氧化成分大量減少;雖然油炸的過程會幫蕈類添加了脂肪,但與損失的養分相比,添加的脂肪可說微不足道。至於水煮,則會使得蕈類的蛋白質與抗氧化物質減少,不過多醣體含量倒是增加了。

而不論是微波或是烤,抗氧化物質不但不會減少,反而還有增加;研究團隊認為這可能是來自於梅納反應(Maillard reaction)的產物:還原酮與梅納汀(melanoidin)。由於梅納汀會吸收420奈米波長的光,研究團隊也發現以微波或烤的方式來烹調的菇菇們,420奈米波長的吸收能力的確是上升了。

研究團隊認為,雖然油炸會使得菇菇們的養分大為減少,但若在烤菇菇的時候加一點點油,反而可以提升抗氧化物質的含量。因此,在烹調蕈類的時候,不要用太多油、水,烹調時間不要太長,這麼一來就可以減少養分流失,也能夠放心享用美味又營養的菇菇料理囉!以台灣相當受歡迎的料理方式來看,雖然香菇雞可能會讓香菇的養分流失到湯裡面,但是大家在吃香菇雞時一定都會喝雞湯,所以只要不要煮太久,在養分的流失上倒不是那麼令人擔心;不過酥炸蠔菇/金針菇可能就不是那麼理想了!

菇類因含有穀胺酸(glutamic acid)與鳥苷單磷酸(GMP)之故,具有特殊的鮮味而受到人們喜愛。從13世紀,華人便開始在段木上種植香菇,而洋菇的培育則到十七世紀的法國。在哈洛德‧馬基的「食物與廚藝」一書中也建議最好的烹調方式是乾式加熱,也與這篇研究中的發現不謀而合呢!雖然可食的菇類種類繁多,但能被人類培養的也不過十多種,許多菇類仍然要靠野外採集取得;不過野生的菇類因為辨別不易,一般民眾還是不要在野外自行採集食用,以免危及生命喔!

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

Irene Roncero-Ramos et. al. Effect of different cooking methods on nutritional value and antioxidant activity of cultivated mushrooms. International Journal of Food Sciences and Nutrition. 2016. http://dx.doi.org/10.1080/09637486.2016.1244662

2017/5/22. BBC Health. Microwave mushrooms 'to keep their goodness', scientists say.

Carline M. J. Brands et. al. Quantification of Melanoidin Concentration in Sugar−Casein Systems. J. Agric. Food Chem., 2002, 50 (5), pp 1178–1183 DOI: 10.1021/jf010789c

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

光合作用的循環電子傳遞(cyclic electron flow)的調節

  圖片來源:維基百科 光合作用(photosynthesis)分為光反應(light reaction)與碳反應(Calvin-Benson cycle)。其中光反應為將陽光的光能轉換為化學能(ATP)與電子(NADPH)的過程。光能由光系統I或光系統II接收並轉換為電子進行傳遞,傳遞的過程中部分的能量被細胞色素b6f複合體(cytochrome b6f complex)擷取,提供植物將氫離子(H + ,proton)由葉綠體的基質(stroma)運輸到類囊體腔(thylakoid lumen)中,製造氫離子梯度(proton gradient),以提供ATP合成酶(ATP synthase)用來合成ATP;電子本身最後被傳送給NADP,產生NADPH用來在碳反應中做為還原電子使用。 上述的過程(稱為線性電子傳遞linear electron flow)並非光反應唯一會進行的反應。除了線性電子傳遞,植物也會進行所謂的循環電子傳遞(cyclic electron flow):電子在由光系統II→細胞色素b6f複合體 →光系統I之後,不將電子運送給Fd-NADP + 還原酶來產生NADPH,而是將電子送給一個Fd-PQ還原酶。由於接著Fd-PQ還原酶會把電子交還給細胞色素b6f複合體,所以被稱為循環電子傳遞。 循環電子傳遞到底有什麼樣的功能,目前還沒有定論。有些科學家認為植物用它來調節能量(ATP)與電子(NADPH)的產生比率,也有些科學家認為循環電子傳遞有保護植物免於被過量光能傷害的功能。不管怎麼說,近年來的研究卻發現了幾個基因與循環電子傳遞的調節有關。 第一個被發現的基因是 PGR5 (PGR=protein gradient)。缺少 PGR5 的阿拉伯芥無法形成氫離子梯度,也就是說 PGR5 為光反應所必須。但是 PGR5 長得一點都不像電子運輸蛋白,這就引起了科學家們的興趣。 後續的研究發現了另一個基因稱為 PGRL1 (PGR5-like 1)。研究團隊發現,缺少 PGRL1 會造成 PGR5 不穩定,但缺少 PGR5 並不會影響 PGRL1 的穩定性。 最近又發現了另一個基因 PGRL2 。研究團隊發現,缺少 PGRL2 對光合作用沒有影響,但是在植物中過量表現 PGRL2 會使 PGR5 的穩定性下降。同時缺少 PGRL2 與 PGRL1 的植...

吃太多光果甘草(liquorice)會有不良作用

  光果甘草。圖片來源: 維基百科 。 光果甘草(liquorice, Glycyrrhiza glabra )又稱為洋甘草,為豆科甘草屬下的一個種,在中國、西亞與南歐都有分布。一般人們會取它的根來製作糖果,在歐美蠻受歡迎的。英文名稱liqurice來自於希臘文的 glycyrrhiza ,意思就是「甜的根」:「 glukus 」意為「甜」,「 rhiza 」意為「根」。它也是中藥甘草的一種,乾燥的根及根莖性味偏涼,加工(蜜炙)後則性味偏溫,各有不同功效。 光果甘草除了可以用來製作糖果,也用於傳統醫學與草藥學。但是光果甘草含有甘草酸(Glycyrrhizin 或 glycyrrhizic acid),如每日每公斤體重服用超過2毫克(2 mg/kg/day)可導致低血鉀、血壓上升、肌肉無力等症狀。 最近發表在《新英格蘭醫學雜誌》上的 一篇文章 提到,一位54歲的建築工人,因為每天吃一包半的光果甘草糖,連吃了幾個星期,結果死於突發的心臟驟停(cardiac arrest)。 醫師認為他的死亡與甘草酸有關。甘草酸是一種皂素(saponin),屬於植物的次級代謝物,由一分子的甘草次酸(glycyrrhetinic acid)與兩分子的葡萄糖醛酸(Glucuronic acid)組成。 甘草糖。圖片來源: 維基百科 。 雖然醫師認為他的死亡與食用大量的甘草糖脫不了關係,但醫師也注意到死者的飲食並不健康。他一向吃很多糖,只是最近幾週改吃甘草糖。 光果甘草與中藥的甘草( G. uralensis )是近親,兩者同屬不同種。中藥的甘草也含有甘草酸,幸好華人文化裡並沒有把甘草做成糖果的習慣,所以應該不會發生甘草酸中毒的情形。 補充:2020/10/10發現了一個影片,裡面提到這個病例以及甘草酸致死的機轉:因為甘草酸的結構跟皮質醇(cortisol)很像,所以會引發類似的效應。 影片裡面提到,現在在美國要買到真的liquorice其實並不容易,大部分都是人工甘味...所以這位仁兄真的很厲害可以買到真的liquorice。 2022/04/07:最近有一篇研究報告提到,甘草酸與甘草次酸有抗癌的活性,而且還能抑制SARS-CoV2的複製。看起來很有趣,但考慮到甘草酸與甘草次酸的毒性,似乎還是要小心使用比較好。 參考文獻: Case 30-2020: A 54-Year-Old ...