跳到主要內容

二氧化碳多,植物就會長得快嗎?

櫸木有外生菌根。圖片來源:Wiki
對於溫室效應(Greenhouse Effect)大家都耳熟能詳了,也知道是因為大氣中因為人類活動所產生的溫室氣體越來越多,這些氣體把太陽與地球所產生的輻射能量留在大氣層裡面,使地球表面的溫度提高。

溫室氣體(greenhouse gases)包括了水蒸氣(H2O)、二氧化碳(CO2)、甲烷(CH4)、一氧化二氮(N2O)、臭氧(O3)與氯氟碳化物(CFCs,Chlorofluorocarbons),不過最主要的還是二氧化碳。慢著!二氧化碳不也是植物光合作用的原料之一嗎?那麼說起來,當大氣中的二氧化碳濃度提高,就代表植物會有更多的原料可以進行光合作用,所以...溫室效應所帶來的二氧化碳濃度上昇,應該會造成植物長得更好,所以溫室效應也不全是壞的囉?

理論上雖然是這樣,不過在實驗中卻發現不見得是這樣喔!有些植物的確長得更好,但效果並不持續;有些卻完全沒有長得更好。雖然有人認為可能是因為氮素不足,但在有些實驗裡又發現好像氮沒有那麼重要;至於植物的年齡與種類、水分、溫度、甚至添加二氧化碳的技術,雖然都可能有影響,卻又無法解釋不同實驗的結果。

到底是什麼影響到植物對二氧化碳所產生的反應呢?由歐洲與美國所組成的研究團隊,想到了菌根(mycorrhiza)。菌根是與植物根部共生的真菌,約有94%的植物根部都可以找到它(剩下的6%是水生植物)。有些菌根會把菌絲伸入植物的根細胞中形成菌根共生體(arbuscular mycorrhizae,簡稱AM),有些菌根則只會包覆在植物根的外圍,形成外生菌根(ectomycorrhizae,ECM)。這些真菌協助植物吸收水分與礦物質,從植物那裡得到光合作用所產生的醣類,對植物的生長與養分的循環有很大的貢獻。

但是外生菌根與菌根共生體與植物之間的互動其實不盡相同。過去的研究發現,外生菌根非常的講義氣,不管土壤裡面的養分(尤其是氮素)充足與否,外生菌根會一直與植物維持共生關係;相對的,菌根共生體雖然名為共生體,但是當土壤養分不足時,有些菌根共生體會轉為寄生(OS:那...還叫共生體嗎?)。而它們的分佈也不相同:菌根共生體多半都與沙漠、草原、灌木以及熱帶森林的植物在一起,外生菌根則常見於溫帶與寒帶森林。所以,會不會之前的許多實驗,其實都受到菌根種類的影響呢?

為了了解是否菌根真的是影響植物對二氧化碳反應的主因之一,研究團隊分析了83個不同研究團隊的實驗。結果發現,影響植物對二氧化碳的反應的主因,除了二氧化碳增加的幅度以外,就剩下氮素的高低與菌根的種類了。而且菌根種類對植物對二氧化碳反應的影響力,只低於氮素的高低呢!

研究團隊發現,當二氧化碳的濃度上昇到400-650 ppm時,以外生菌根為主的植物,生長的速度(以植物重量的增加來表示)提高了將近三分之一(30±3%);但菌根共生體在相同的狀況下生長的速度只提高了不到一成(7±4%)。

而這個效應,在氮素不足的土壤中更明顯。外生菌根在氮素不足的土壤中,還是可以幫助植物提高生長速度(28±5%),但是菌根共生體在氮素不足的環境下,對植物的生長就沒有幫助了(轉為寄生了嗎?)。相對的,當土壤中氮素充足時,有菌根共生體的植物,生長的速度提高了大約兩成(20±6%),但與外生菌根共生的植物,生長的速度只略微提高(33±4%)而已。

這個實驗結果告訴了我們,由於外生菌根多半與寒帶、溫帶林木共生,當大氣中二氧化碳的濃度節節上昇時,溫帶與寒帶林就變得越來越重要了;尤其是野外的森林,通常不會(也不可能)會有人刻意給予氮肥,因此可以假設在溫帶與寒帶的野生林木,對於固碳的重要性是高於熱帶森林的。

當然,這個實驗也意味著,過去在估計植物對固碳的貢獻時,溫帶與寒帶的森林的貢獻有被嚴重低估的現象喔!雖然聽起來似乎是個好消息,不過這些年的研究也發現,全球暖化會影響到土壤的菌相,所以還是不要太高興比較好呢!

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

César Terrer et. al. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 01 Jul 2016: Vol. 353, Issue 6294, pp. 72-74 DOI: 10.1126/science.aaf4610

留言

這個網誌中的熱門文章

植物是地球的能量工廠

地球上最重要的反應應該就是光合作用(photosynthesis)了,就如植物的頂芽生長點是地球上最重要的組織一般。這是由於地球上的異營生物無不依靠自營生物作為直接或間接的食物來源,而自營生物的養分幾乎都是由光合作用而來。
葉片是獲取能量的小尖兵
自營生物的器官衰老是非常複雜的機制。在秋天撿起一片地上的黃葉,與仍在樹梢上翠綠的葉子相比,會發現黃葉的重量較同等大小的綠葉輕很多;這是因為植物會將衰老葉片中剩餘的、可利用的物質分解後運回,提供其他組織再運用。不若異營生物,由於每一個器官、組織都需要由自己生產的能量來製造,因此自營生物在淘汰老廢器官與組織時,一定會將殘餘的養分盡可能的回收。汰舊換新對所有生物都是一整年的工作,但對於多年生的落葉樹來說,每年春秋二季會發生大規模的迎新去舊,是它們一年兩次的大工程。
當時序慢慢進入秋天時,植物體內可藉由光敏素(phytochrome)感應逐漸加長的黑夜。光敏素是由兩個多肽組成的雙體(dimer),每個多肽有一千多個氨基酸那麼長,並加上一個色素分子(phytochromobillin)。光敏素將季節的信息送到頂芽,頂芽便開始進入休眠;其它的葉片啟動衰老機制、將可以回收的養分盡量回收之後,隨著連接葉柄與莖的薄壁細胞死亡,毫無生氣的葉片因自己重量的垂墜,被拉離開植株,飄落到地面。
這一切雖然看似與光合作用無關,但它卻是背後的影武者。在夏季的尾聲,隨著日照時間減少,植物能進行光合作用的時間縮短;同時,因為太陽的角度逐漸偏斜,在有限時間內,植物能捕捉到的光能也逐漸減少。以經濟的角度來看,光合自營生物此時若仍維持著龐大數量的葉片,並不是一種聰明的做法;於是有些樹木選擇將葉片中的養分回收儲存,同時降低所有的活動來過冬。等到冬去春來,可進行光合作用的時間變長了,加上太陽的角度逐漸轉正,植物以光敏素覺察到黑夜時間逐漸縮短,新芽便開始萌發,葉綠素的合成與葉綠體的發育,讓新生的葉片抹上了一層層的綠意。
由此可知,光合作用需要捕捉光能、以及將光能轉換為化學能的「用具」,並且,這些用具要能夠被恰當地放置在可以接收到足夠光能的地方。除了少數因為生活環境而必須修改基本設計的植物以外,絕大多數植物執行光合作用的主要部位是葉片;而葉片中用來捕捉光能的用具就是光系統(photosystem)。
抽絲剝繭光系統的運作
在葉綠體的類囊體膜(stromal membrane)上,可以…

孔雀秋海棠的光合作用魔術

原產於馬來西亞雨林的孔雀秋海棠(Begonia pavonina),只有在光線極弱的狀況下葉片會出現藍色。當光線夠強的時候,葉片上的藍色就不會出現了。

因為這藍色是如此的美麗,使它得到了「孔雀秋海棠」(peacock begonia)的美名。大家搶著種它,想要看到那美麗的孔雀藍;但到底為什麼要出現這美麗的孔雀藍呢?

通常我們都認為,在葉片裡面除了葉綠素以外的光合色素,都是輔助色素:在光線不夠時,幫忙吸收更多光能;在光線太強時,把多餘的能量發散。所以孔雀秋海棠的孔雀藍,是否也是一種輔助色素呢?

之前的研究已經發現,這些孔雀藍,應該是來自於被稱為虹彩體(iridoplast)的一種色素體(plastid)。虹彩體位於葉片上表皮的細胞中,為葉綠體的變體。在最近的研究發現,這些虹彩體的類囊體(thylakoids)以一種不尋常的方式排列:每疊葉綠餅(grana)由三到四個類囊體組成,厚度約為40奈米;而一疊一疊的葉綠餅之間的距離約為100奈米。


一般的葉綠體,通常葉綠餅的排列是散亂的(如圖);孔雀秋海棠的虹彩體的葉綠餅卻排得如此整齊,有什麼作用呢?

研究團隊測量了20個虹彩體,發現它們的特殊構造賦予它們反射435~500奈米的光波的能力。這個波長正好就是藍光波段的最右邊,與綠光交界的位置。這就是為什麼孔雀秋海棠是藍色的原因吧!

不過,這些虹彩體不只是會反射藍光而已。研究團隊還發現,虹彩體讓孔雀秋海棠吸收較長波的綠光與紅光的能力提升了!這對孔雀秋海棠是非常重要的,因為它們通常在熱帶雨林的地面上生長。

在熱帶雨林裡,光線都被大樹給遮住了,使得地表的光線極弱。弱到怎樣的地步呢?大約是樹冠光線強度的百萬到千萬分之一喔!而且還不只是光線變弱而已,因為雨林中的大樹們把進行光合作用所需的兩個主要波段的光(460奈米與680奈米)都吸收得差不多了,在這樣的環境下,孔雀秋海棠如果不發展出吸收一點綠光的本事,還真的會混不下去。

事實上,因為這些特殊的構造,虹彩體比一般的葉綠體進行光合作用的效率更高。研究團隊藉著測量葉綠體的螢光(葉綠體進行光合作用時,一部份的葉綠素會把吸收的光以暗紅色的螢光發射出去;所以可以藉著測量螢光了解植物進行光合作用的效率)發現,虹彩體進行光合作用的效率,比一般的葉綠體都好。不過,當光線變強的時候,虹彩體的效率就沒有那麼好了;這或許就是為何,當我們把孔雀秋海棠種在光線…

【原來作物有故事】鳳梨 漂洋過海在臺灣發揚光大

作者:葉綠舒、王奕盛、梁丞志

在台灣提到鳳梨,一定會想到鳳梨酥這代表台灣的伴手禮。但是鳳梨其實不是台灣原產的水果喔!鳳梨原產於熱帶南美洲,在哥倫布1493年的第二次航行時於瓜德羅普的村莊中發現後引進歐洲,約於16世紀中葉傳入中國;台灣則是在1605年先由葡萄牙人引進澳門,再由閩粵傳入台灣,至今已有三百多年歷史。

在台灣,鳳梨因為台語諧音「旺來」很吉利而廣受大眾喜愛,但其實鳳梨的名字是根據它果實的型態來的,因為果實的前端有一叢綠色的葉片,讓以前的人覺得很像鳳尾,加上果肉的顏色像梨,所以就取名為「鳳梨」。至於英文的名稱也是因為果實的外型像毬果、而肉質香甜,所以就被取名為「松蘋果」(pineapple)啦!其實鳳梨果實的毬果狀的外觀主要是因為鳳梨是「聚合果」,每顆鳳梨是由200朵鳳梨花集合而成的!而它的學名Ananas則是來自於圖皮語,意思是很棒的水果。

在哥倫布把鳳梨引進歐洲以後,因為它的香甜好滋味讓它大受歡迎;但是身為熱帶水果的鳳梨,在溫帶的歐洲長得並不好!為了要讓王公貴族們吃到鳳梨,十六世紀的園丁們發明了「鳳梨暖爐」:把單顆鳳梨放在由馬糞堆肥做的暖床上的木製棚架,並升起爐火來保持溫暖,好讓鳳梨這熱帶植物可以在溫帶的歐洲開花結果;世界上第一個溫室就這樣誕生了,並由此開啟了歐洲建造溫室的熱潮!

鳳梨不只是改變了歐洲,在日本人到台灣後,嚐到了鳳梨的香甜滋味,便開始推動鳳梨產業。1903年,岡村庄太郎於鳳山設置岡村鳳梨工廠,生產鳳梨罐頭;後來逐漸形成中部以員林、南部以鳳山為中心的鳳梨生產體系。在1938年時,鳳梨罐頭工廠女工竟然佔了全台灣女性勞動人數三分之一以上呢!光復以後台灣的鳳梨產業也曾在1971年登上世界第一,讓台灣被稱為「鳳梨王國」。但是後來不敵其他國家的競爭,已經由外銷罐頭改為多以內銷鮮食鳳梨為主的型態了。

從清朝、日治時代直到現在,台灣的鳳梨品系一直都一樣嗎?當然不是囉!最早的鳳梨被稱為「在來種」,後來日治時代為了製作罐頭方便,從夏威夷引進了開英種;到了1980年以後,因為罐頭外銷敵不過競爭,台灣的鳳梨改為內銷且以鮮食為主,為了挽救鳳梨產業,農改場、農試所便培育出各種不同適合鮮食的鳳梨:包括不用削皮可以直接剝來吃的釋迦鳳梨(台農4號),最適合在秋冬生產的冬蜜鳳梨(台農13號),有特殊香氣的香水鳳梨(台農11號),以及因為果肉乳白色被稱為牛奶鳳梨的台農20號等…