跳到主要內容

降低水田的甲烷釋放

圖片:wiki
全球暖化有20%是甲烷(methane,CH4)造成的,而這些甲烷主要是畜牧以及農業產生。農業行為中產出最多甲烷的就是種稻了。

種稻怎麼會產生甲烷呢?原來水田是個厭氧的環境,在厭氧環境生長的細菌會產生甲烷,貢獻了80%-90%水田的甲烷產出。這些甲烷大部分由植物吸收後釋放到大氣中,製造全球暖化。

但是米不能不吃,要怎麼辦呢?科學家們發現,如果把水田的水放乾一段時間,可以提升稻子的產量、降低甲烷的釋放;但是放水的時機如果沒有抓好,產量反而減少,而且對於高低不平的水田這個方法也不實際。

最好的辦法是能夠改良水稻的品種。過去曾經發現,水田裡的細菌一部份的糧食是來自於稻子的根部合成的糖以及其他的化合物;有些品系的稻子可以合成比較多的米,而這些品系的稻子在種植時,水田裡的甲烷釋放的量相對比較少。

最近瑞典農業大學的研究團隊,將大麥(barley)的SUSIBA2基因放進稻米中。SUSIBA2是個轉錄因子(transcription factor),使稻子合成更多的澱粉,根部便會分泌少一點醣類以及其他的化合物。產生的新種稻米在開花前釋放的甲烷只有原品系的5%-10%左右,開花以後,因為合成穀粒的緣故,水田釋放的甲烷降到原品系的0.3%。

究竟減少水田的甲烷釋放,是否是因為甲烷菌(methanogen)減少以及澱粉合成上昇呢?研究團隊將稻子以420奈米波長的光照射,以觀察由甲烷菌特有的F420輔因子所放出的螢光。結果發現,SUSIBA2基改水稻所發出的螢光比野生種少很多。定量聚合酶鏈反應(qPCR)也發現,甲烷菌在基改水稻中的量比野生種少了20%-30%。而澱粉在SUSIBA2基改水稻的穀粒中佔乾重的86.9%,比野生種多了10.2%;研究團隊觀察了幾個與糖代謝相關的基因,發現這些基因在SUSIBA2基改水稻中的莖與種子的表現量都上昇了。

因此,研究團隊認為,他們經過提高水稻中特定轉錄因子的表現,使水稻將較多的光合作用產物用來合成澱粉;相對的,它的根分泌較少的化學物質,而這些物質是甲烷菌所需要的。因為食物減少,所以甲烷菌在水田裡的量就變少了,於是水田釋放的甲烷量也就跟著下降了。

筆者認為這是很不錯的研究,只是不知道社會大眾對基改作物的接受度,是否會使這新種永遠停留在實驗農場中?

參考文獻:

C. Sun et. al., 2015. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature.

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

光合作用(photosynthesis)釋放氧氣,氧氣來自於水

  圖片來源: 維基百科 說真的,我雖然有時候也會寫一些「老」發現,但是像這樣幾乎每一本生物教科書與植物生理學教科書都會提到的事情,我還真的沒有想過要寫。 事情是這樣開始的。 2024年的6月1日下午,我收到記者的信息,內容如下: 今天北市教甄題目出現「植物行光合作用釋放出氧,氧來自何者?選項有A二氧化碳、B水、C葡萄糖、D空氣中的氧。」但答案是A的爭議,想請問現在能就這個題目跟您進行簡短採訪釋疑嗎? 我一看之下大驚失色,答案怎麼會是A呢?當然是B。 但是,說話要有證據,於是我就去查了幾本書,再加上網友的協助,最後得到的答案如下: 在1931年時,當C. B. van Niel(1897-1985)觀察光合細菌(包括紫硫菌與綠硫菌)時,因為這兩種細菌利用硫化氫(H 2 S)與二氧化碳為原料,產生元素硫,所以他就提出「光合作用的氧氣來自於水」的假說。  他的假說,在1941年,由Ruben等人以同位素氧18標定的水或二氧化碳確認,光合作用放出來的氧氣是來自於水。 答案是B才對啊! 所以我就發了一篇短文說明。 沒想到,後來看到的新聞竟然是: 圖片取自顏聖紘老師臉書 只能說真的蠻失望的。然後我點進去看了一下幾個新聞,老師堅持不改,這讓我覺得很失望;但更好笑的是,教育局說他們「尊重專業」,所以老師說不改就不改。 什麼時候,「尊重專業」可以這樣用了?難道Ruben等人的實驗就可以不算? 於是我就去挖出了Ruben等人的論文。 Ruben等人 (1941) 使用氧的同位素 (O 18 ) 作為追蹤劑,探討了光合作用中氧氣的來源。他們把綠藻 (Chlorella) 懸浮在含有重氧水 (H 2 O 18 ) 和一般碳酸氫鉀 (KHCO 3 ) 的溶液中。實驗結果顯示,釋放出的氧氣中的 O 18 /O 16 比例與水中的比例相同。 另外,當藻類在含有O 18 標記的二氧化碳 (CO 2 ) 和一般的水 (H 2 O) 中進行光合作用時,釋放出的氧氣中並沒有檢測到O 18 。 所以,實驗結果顯示:氧氣來自於水,而不是二氧化碳。 我其實很好奇,北市教甄出題的老師不改答案的理由是什麼?難道他自己做實驗發現氧氣來自於二氧化碳嗎?如果這樣,那可真的是諾貝爾等級的發現,應該趕快聯絡Nature或Science來發表啊!為什麼只有在教甄的答案上發表呢? 如果是弄錯了,那改一...