跳到主要內容

原來我們一直在吃基改蕃薯?!

基改作物(Genetically modified organism,GMO)在過去這些年一直被追打,當然有一部份原因是因為生技公司硬推,堅持GMO是安全的,不需要額外的檢驗來確認其安全性等等;另一部份則是有些民眾與專家堅持GMO是「把細菌的基因放在植物裡」,是不自然的。

筆者認為基改作物還是需要審慎的檢驗,畢竟雖然天然的食物也有人對它過敏,但過敏的人有權利不去食用會產生過敏的食物,而食品中也都會列出這些可能的過敏原(如花生、核桃等)。以目前有些國家容許食品可不列出含有基改成分,其實是不安全也罔顧消費者的權利的。
農桿菌(Agrobacterium tumefaciens)。
圖片來源:wiki

但是細菌的基因出現在植物中,真的就不自然嗎?別忘了農桿菌(Agrobacterium tumefaciensAgrobacterium rhizogenes)本來就是植物的病原菌喔!

農桿菌平常生活在土壤中,當植物的表皮出現傷口時,農桿菌很容易便隨著風被帶到傷口,而後便開始感染、繁殖(過程可參考「農桿菌的不確定性」一文)。由於農桿菌的感染需要將自己質體上的一段基因(即T-DNA)插入到宿主的基因體中,而一旦插入便不會移出,這段DNA便永久地留在植物的基因體中了。

可能有讀者問,如果是這樣,為何過去沒有在植物中發現農桿菌的序列呢?

這是因為,農桿菌感染的只是一小部分植物的細胞,而這些細胞是「體細胞」,所以不會遺傳下來。現代生物科技製作基改作物,雖然也是感染體細胞,但接下來的篩選卻會將不帶有農桿菌基因的體細胞給去掉。

怎麼去掉的呢?原來科學家們為了方便篩選,在轉殖基因中加入了抗生素耐受性標籤(ARM,antibiotics resistant marker)。因此,在轉殖完成後,接下來只要把植物組織放在有抗生素的培養基上培養,便可以殺死沒有接受到轉殖基因的植物細胞了!

當然,在自然界,當農桿菌感染植物時,並不會帶有ARM基因。所以,我們只能以植物是否長瘤來做為辨別這株植物是否受到農桿菌感染;因為農桿菌插入植物的T-DNA中含有可以製造更多的生長素(auxin,包括吲哚乙酸等)以及細胞分裂素(cytokinin),使得帶有T-DNA的植物細胞可以加速分裂增生。當局部的植物細胞分裂速度比其他細胞要快得多結果當然就是長瘤囉!而T-DNA還帶有合成農桿菌的食物的基因,所以這些植物的瘤其實就是農桿菌的殖民地,農桿菌在此建立農場,生產他們需要的食物、繁衍子孫呢!

不過,如果植物在被農桿菌感染後,在某個時間點農桿菌消失了(不要問我怎麼消失的),而所有的細胞還是都帶有T-DNA,因為大家都長得一樣快,所以就不會看到長瘤的現象囉!

講了這麼多,其實是因為最近華盛頓大學(University of Washington, Seattle)在進行蕃薯(Ipomoea batatas)的RNA定序時發現了一些與農桿菌非常相似的序列。接著他們便進行基因體的定序,結果發現了更多農桿菌的基因:包括了合成生長素的酵素基因等等。

而後續的實驗也證明了這些農桿菌的基因確實是位於蕃薯上,而且也有表現出來。這些農桿菌基因分成兩段,其中第一段在研究團隊偵測的291個蕃薯的栽培種中都可以找到,但在野生種中沒有發現;第二段則分佈得較不廣泛,在217個蕃薯品種(包括栽培種與野生種)中,只有45個找到。

這些好吃的蕃薯,原來也都是「基改」作物?
圖片來源:農委會

為什麼第一段農桿菌基因不出現在野生種中呢?筆者認為,由於第一段農桿菌基因中包括了製作生長素的酵素基因,這可能會使蕃薯長得很快,但是在野地裡因為土壤的養分不可能一直都很充足,長得快當然也意味著需要更多養分,這可能會使得這些蕃薯在自然界反而競爭不過他們長得慢一點的兄弟們。但是長得快卻是人類喜歡的特點,於是就在選種中被特意地留下來了。第二段農桿菌基因可能因為與生長速度無關,但也與蕃薯本身的生存競爭力無關,所以雖然還存在於野生種與栽培種中但分佈的並不十分廣泛。

基改作物的定義是什麼?如果以「帶有農桿菌序列」來做為標準,那麼我們已經吃天然基改蕃薯數千年(臺灣大約在明清時接觸到蕃薯,所以應該是五六百年);而這些蕃薯因為帶有農桿菌的基因,所以長得特別快,也受到人類的喜愛而在選種的過程中被保留了下來。

筆者無意為基改作物辯解,也不是基改作物的擁護者;只是覺得這個例子可以讓我們再思考一下。在漫長的人類演化過程中,我們一直在嘗試新的事物/食物;有些對大部分的人都有害,有些則對大部分的人有好處。在二十一世紀,每天都有新事物被發明出來的時刻,我們除了立法規範外,是否應該用較為開放的心胸去評斷這些新事物呢?

參考文獻:

Tina Kyndt, Dora Quispe, Hong Zhai, Robert Jarret, Marc Ghislain, Qingchang Liu, Godelieve Gheysen, and Jan F. Kreuze. 2015. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop. PNAS. published ahead of print, doi:10.1073/pnas.1419685112

留言

  1. 原來如此
    但格主知道基改對於人體的影響嗎
    還有 目前似乎確定的是造成環境汙染 例如帶有抗雜草基因的植物卻讓雜草進化 需要使用更高劑量的除草劑

    回覆刪除
  2. 網誌管理員已經移除這則留言。

    回覆刪除
  3. 網誌管理員已經移除這則留言。

    回覆刪除
  4. 「基改」跟「天然雜交後再人為選擇」是兩碼子事,怎可混為一談。一個是只改變基因片段,一個是由自然界自己雜交產生(所以不會只有幾個基因片段被改變,是一整套),居然可以把它當作是同一類事......

    回覆刪除
    回覆
    1. 最早在番薯裡面的農桿菌的片段,絕對是農桿菌感染無疑。這個部分跟現代的基改在過程上沒有不同,只是農桿菌轉進去的是對自己有利的片段(表現植物賀爾蒙等等),而人類利用農桿菌轉入自己想要的片段。
      至於透過後續的傳統育種雜交讓番薯裡面的農桿菌基因變得更加普及的部分,並不在本文想要討論的範圍之列。我只是想要點出:人類往往會選取對自己有利的就喜歡它、不喜歡的就大加撻伐,如此而已。

      刪除

張貼留言

這個網誌中的熱門文章

植物是地球的能量工廠

地球上最重要的反應應該就是光合作用(photosynthesis)了,就如植物的頂芽生長點是地球上最重要的組織一般。這是由於地球上的異營生物無不依靠自營生物作為直接或間接的食物來源,而自營生物的養分幾乎都是由光合作用而來。
葉片是獲取能量的小尖兵
自營生物的器官衰老是非常複雜的機制。在秋天撿起一片地上的黃葉,與仍在樹梢上翠綠的葉子相比,會發現黃葉的重量較同等大小的綠葉輕很多;這是因為植物會將衰老葉片中剩餘的、可利用的物質分解後運回,提供其他組織再運用。不若異營生物,由於每一個器官、組織都需要由自己生產的能量來製造,因此自營生物在淘汰老廢器官與組織時,一定會將殘餘的養分盡可能的回收。汰舊換新對所有生物都是一整年的工作,但對於多年生的落葉樹來說,每年春秋二季會發生大規模的迎新去舊,是它們一年兩次的大工程。
當時序慢慢進入秋天時,植物體內可藉由光敏素(phytochrome)感應逐漸加長的黑夜。光敏素是由兩個多肽組成的雙體(dimer),每個多肽有一千多個氨基酸那麼長,並加上一個色素分子(phytochromobillin)。光敏素將季節的信息送到頂芽,頂芽便開始進入休眠;其它的葉片啟動衰老機制、將可以回收的養分盡量回收之後,隨著連接葉柄與莖的薄壁細胞死亡,毫無生氣的葉片因自己重量的垂墜,被拉離開植株,飄落到地面。
這一切雖然看似與光合作用無關,但它卻是背後的影武者。在夏季的尾聲,隨著日照時間減少,植物能進行光合作用的時間縮短;同時,因為太陽的角度逐漸偏斜,在有限時間內,植物能捕捉到的光能也逐漸減少。以經濟的角度來看,光合自營生物此時若仍維持著龐大數量的葉片,並不是一種聰明的做法;於是有些樹木選擇將葉片中的養分回收儲存,同時降低所有的活動來過冬。等到冬去春來,可進行光合作用的時間變長了,加上太陽的角度逐漸轉正,植物以光敏素覺察到黑夜時間逐漸縮短,新芽便開始萌發,葉綠素的合成與葉綠體的發育,讓新生的葉片抹上了一層層的綠意。
由此可知,光合作用需要捕捉光能、以及將光能轉換為化學能的「用具」,並且,這些用具要能夠被恰當地放置在可以接收到足夠光能的地方。除了少數因為生活環境而必須修改基本設計的植物以外,絕大多數植物執行光合作用的主要部位是葉片;而葉片中用來捕捉光能的用具就是光系統(photosystem)。
抽絲剝繭光系統的運作
在葉綠體的類囊體膜(stromal membrane)上,可以…

孔雀秋海棠的光合作用魔術

原產於馬來西亞雨林的孔雀秋海棠(Begonia pavonina),只有在光線極弱的狀況下葉片會出現藍色。當光線夠強的時候,葉片上的藍色就不會出現了。

因為這藍色是如此的美麗,使它得到了「孔雀秋海棠」(peacock begonia)的美名。大家搶著種它,想要看到那美麗的孔雀藍;但到底為什麼要出現這美麗的孔雀藍呢?

通常我們都認為,在葉片裡面除了葉綠素以外的光合色素,都是輔助色素:在光線不夠時,幫忙吸收更多光能;在光線太強時,把多餘的能量發散。所以孔雀秋海棠的孔雀藍,是否也是一種輔助色素呢?

之前的研究已經發現,這些孔雀藍,應該是來自於被稱為虹彩體(iridoplast)的一種色素體(plastid)。虹彩體位於葉片上表皮的細胞中,為葉綠體的變體。在最近的研究發現,這些虹彩體的類囊體(thylakoids)以一種不尋常的方式排列:每疊葉綠餅(grana)由三到四個類囊體組成,厚度約為40奈米;而一疊一疊的葉綠餅之間的距離約為100奈米。


一般的葉綠體,通常葉綠餅的排列是散亂的(如圖);孔雀秋海棠的虹彩體的葉綠餅卻排得如此整齊,有什麼作用呢?

研究團隊測量了20個虹彩體,發現它們的特殊構造賦予它們反射435~500奈米的光波的能力。這個波長正好就是藍光波段的最右邊,與綠光交界的位置。這就是為什麼孔雀秋海棠是藍色的原因吧!

不過,這些虹彩體不只是會反射藍光而已。研究團隊還發現,虹彩體讓孔雀秋海棠吸收較長波的綠光與紅光的能力提升了!這對孔雀秋海棠是非常重要的,因為它們通常在熱帶雨林的地面上生長。

在熱帶雨林裡,光線都被大樹給遮住了,使得地表的光線極弱。弱到怎樣的地步呢?大約是樹冠光線強度的百萬到千萬分之一喔!而且還不只是光線變弱而已,因為雨林中的大樹們把進行光合作用所需的兩個主要波段的光(460奈米與680奈米)都吸收得差不多了,在這樣的環境下,孔雀秋海棠如果不發展出吸收一點綠光的本事,還真的會混不下去。

事實上,因為這些特殊的構造,虹彩體比一般的葉綠體進行光合作用的效率更高。研究團隊藉著測量葉綠體的螢光(葉綠體進行光合作用時,一部份的葉綠素會把吸收的光以暗紅色的螢光發射出去;所以可以藉著測量螢光了解植物進行光合作用的效率)發現,虹彩體進行光合作用的效率,比一般的葉綠體都好。不過,當光線變強的時候,虹彩體的效率就沒有那麼好了;這或許就是為何,當我們把孔雀秋海棠種在光線…

【原來作物有故事】鳳梨 漂洋過海在臺灣發揚光大

作者:葉綠舒、王奕盛、梁丞志

在台灣提到鳳梨,一定會想到鳳梨酥這代表台灣的伴手禮。但是鳳梨其實不是台灣原產的水果喔!鳳梨原產於熱帶南美洲,在哥倫布1493年的第二次航行時於瓜德羅普的村莊中發現後引進歐洲,約於16世紀中葉傳入中國;台灣則是在1605年先由葡萄牙人引進澳門,再由閩粵傳入台灣,至今已有三百多年歷史。

在台灣,鳳梨因為台語諧音「旺來」很吉利而廣受大眾喜愛,但其實鳳梨的名字是根據它果實的型態來的,因為果實的前端有一叢綠色的葉片,讓以前的人覺得很像鳳尾,加上果肉的顏色像梨,所以就取名為「鳳梨」。至於英文的名稱也是因為果實的外型像毬果、而肉質香甜,所以就被取名為「松蘋果」(pineapple)啦!其實鳳梨果實的毬果狀的外觀主要是因為鳳梨是「聚合果」,每顆鳳梨是由200朵鳳梨花集合而成的!而它的學名Ananas則是來自於圖皮語,意思是很棒的水果。

在哥倫布把鳳梨引進歐洲以後,因為它的香甜好滋味讓它大受歡迎;但是身為熱帶水果的鳳梨,在溫帶的歐洲長得並不好!為了要讓王公貴族們吃到鳳梨,十六世紀的園丁們發明了「鳳梨暖爐」:把單顆鳳梨放在由馬糞堆肥做的暖床上的木製棚架,並升起爐火來保持溫暖,好讓鳳梨這熱帶植物可以在溫帶的歐洲開花結果;世界上第一個溫室就這樣誕生了,並由此開啟了歐洲建造溫室的熱潮!

鳳梨不只是改變了歐洲,在日本人到台灣後,嚐到了鳳梨的香甜滋味,便開始推動鳳梨產業。1903年,岡村庄太郎於鳳山設置岡村鳳梨工廠,生產鳳梨罐頭;後來逐漸形成中部以員林、南部以鳳山為中心的鳳梨生產體系。在1938年時,鳳梨罐頭工廠女工竟然佔了全台灣女性勞動人數三分之一以上呢!光復以後台灣的鳳梨產業也曾在1971年登上世界第一,讓台灣被稱為「鳳梨王國」。但是後來不敵其他國家的競爭,已經由外銷罐頭改為多以內銷鮮食鳳梨為主的型態了。

從清朝、日治時代直到現在,台灣的鳳梨品系一直都一樣嗎?當然不是囉!最早的鳳梨被稱為「在來種」,後來日治時代為了製作罐頭方便,從夏威夷引進了開英種;到了1980年以後,因為罐頭外銷敵不過競爭,台灣的鳳梨改為內銷且以鮮食為主,為了挽救鳳梨產業,農改場、農試所便培育出各種不同適合鮮食的鳳梨:包括不用削皮可以直接剝來吃的釋迦鳳梨(台農4號),最適合在秋冬生產的冬蜜鳳梨(台農13號),有特殊香氣的香水鳳梨(台農11號),以及因為果肉乳白色被稱為牛奶鳳梨的台農20號等…