跳到主要內容

結合細菌與晶片的仿生葉(Bionic leaf)

替代能源的發展,除了生質酒精、生質柴油外,其實也有許多研究團隊在研發如何將太陽能轉為可儲存的能源。畢竟,太陽能不需要如生質能源背負與人爭食或砍伐森林的罪名,只要天空沒有被雲籠罩,它就是取之不盡用之不竭。

過去,哈佛Nocera老師的研究團隊,曾經發表過以矽(Si)為原料的半導體電池,它可以在接受光能後,利用光能轉化的電能將水分解為氫氣(H2)與氧氣(O2)。雖然氫氣也可以用於燃料,但由於氫氣非常容易自燃(佔大氣4%以上即有自燃的風險)、運輸較液態能源(汽油、柴油、酒精)不便,加上目前的內燃機(引擎)都還是使用液態能源看來,雖然氫氣真的很環保(燃燒完就剩下水),但卻不大適合。

於是研究團隊開始尋找能把氫氣轉換成為液態能源的方式。這次,他們結合了加大洛杉磯分校的研究團隊。加大團隊將Ralstonia eutropha這隻菌做了一些修改,使它在養分不足(nutrient-limited)的狀況下將乙醯輔酶A(acetyl-CoA)用來產生異丙醇(isopropanol)。原本Ralstonia eutropha會將乙醯輔酶A合成PHB(polyhydroxybutyrate)儲存起來,但加大的研究團隊用生物工程的方法把中間的兩個酵素去掉,然後植入帶有另外四個基因的質體,使細菌不再能夠合成PHG,卻有了合成異丙醇的能力。於是,當這隻菌在缺乏氮源的時候,只要提供給它氫氣與二氧化碳,它便開始產生異丙醇了。雖然二氧化碳要額外打進去,但以現在地球的狀況來說,二氧化碳多得很,不是正好可以用掉嗎?

結合細菌與晶片的液態能源產生系統。圖片來源:Science, Li et. al., 2012
但是光只是這樣還不行,這個系統還有一些需要調整的地方。由於使用電極來分解水,除了氫氣已外也會產生氧氣,而在通電的狀況下,不免會產生一些自由基妨礙細菌生長;另外是,電極若使用貴金屬白金或銦(indium),不僅這些金屬價格昂貴、不易取得,這些金屬在自然狀況下(別忘記,這個系統使用了細菌,所以所有的操作要盡量符合自然狀況)對水的電解力也不高(除非提高電壓,但如此一來又會產生更多自由基)。

研究團隊首先使用了磷酸鈷(CoPi)與鎳錳鋅/不鏽鋼的電極,解決了貴金屬與電解力不足的問題;但是自由基仍不免產生,於是研究團隊嘗試加入來自牛肝的過氧化氫酶(catalase)。在過氧化氫酶順利處理掉了自由基的問題後,整個系統的產能來到每公升培養液產出216毫克的異丙醇,若換算為太陽能-生質能轉換則來到3.2%,為目前所有地球上的系統中最高,連在生長季節的植物也只有1.4%-2.0%而已呢!由於異丙醇可以用於內燃機,容易儲存與運輸,所以這個改良可說是生質能源的大進步。

過去單純的使用太陽能發電,由於電能只能短時間儲存(電池),造成一定程度的浪費;如能有將光能轉換為化學能(如光合作用)的方法,便可以將光能儲存起來。過去許多轉換的方式,若不是儲存困難(氫氣),便是只能小量施作,無法擴大。現在哈佛開發的方法,可以將光能以化學能的方式儲存起來,又能擴大施作,產生的化學能還可直接用於內燃機。雖然異丙醇燃燒會產生二氧化碳,但這個方法所產製的異丙醇也是由二氧化碳而來,構成了一個完整的循環。真的非常令人期待呢!

本文版權為台大科教中心所有,需經同意方可轉載)

參考文獻:

Wikipedia. Hydrogen.

Han Li, Paul H. Opgenorth, David G. Wernick, Steve Rogers, Tung-Yun Wu, Wendy Higashide, Peter Malati, Yi-Xin Huo, Kwang Myung Cho, James C. Liao. 2012. Integrated Electromicrobial Conversion of CO2 to Higher Alcohols. Science. 335:1596

Joseph P. Torella, Christopher J. Gagliardi, Janice S. Chen, D. Kwabena Bediako, Brendan Colón, Jeffery C. Way, Pamela A. Silver, and Daniel G. Nocera. 2015. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system. Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1424872112

留言

這個網誌中的熱門文章

吃到含植物生長激素的水果會性早熟?

今天看到一則新聞「激素催熟鳳梨! 吃多恐性早熟」,害我出考題出到一半又要分心來處理這件事。

這則新聞裡面言之鑿鑿地說:

為了讓兩年生鳳梨,提早賣個好價,有不肖果農在鳳梨心施打生長激素,讓鳳梨變大又變甜,吃進肚子裡,尤其對孩童,可能影響荷爾蒙,導致性早熟

看了真的讓人不知道該說什麼才好。鳳梨的外皮極硬,要「打」生長素進去,筆者不知道要用什麼樣的工具才辦得到;另外,果實的發育是整個一起長的,如果在成長的過程中用針筒之類的去注射鳳梨,整個果實都會停止生長,並非局部變黑。鳳梨局部變黑通常是因為果實發育的過程中氣候變化太劇烈(太熱是常見的原因),整園的鳳梨幾百顆,要用注射的,只能說打到天亮都打不完吧。

噴灑生長素是比較有可能的,植物也的確有生長素,不過植物的生長素真的會對動物有影響嗎?我們先來看一下會讓植物生長的激素們是什麼。

通常我們提到植物的生長素就是說IAA(吲哚乙酸,indole-3-acetic acid)。

吲哚乙酸在植物裡面有非常多的效用,包括讓莖延長、使果實單維結果(不用授粉)、植物的光趨性(通常翻成向光性,phototropism)也跟它有關。

吲哚乙酸的化學式是C10H9NO2,是個小分子化合物。

另外一類會讓果實長大的植物賀爾蒙是吉貝素(gibberellic acid, GA)。

無子葡萄常會用到吉貝素讓果實長大,主要是因為果實裡的種子是天然吉貝素的來源,無子的果實因為缺乏吉貝素會比較小,所以果農會噴灑吉貝素讓果實長大。

吉貝素的化學式是C19H22O6,比生長素大概大了快一倍,不過還是屬於小分子化合物。

但是不管是生長素還是吉貝素,筆者查了很多資料,都沒有提到可以刺激動物生長的活性。倒是合成的生長素2,4-D曾有一度被懷疑可能致癌,不過美國的環保署在2007年也已經宣布沒有任何證據支持它會致癌。2,4-D的化學式是C8H6Cl2O3,還是一個小分子化合物。

至於動物的生長激素呢?以人的生長激素GH1為例,它不是小分子化合物,而是一個由191個氨基酸構成的多肽。

上圖的每個小球就是一個原子,而植物的「生長激素」,不管是生長素、吉貝素還是合成的2,4-D,都是幾十個原子的小東西;動物的生長激素則是數千個原子的龐然大物,根據默克藥典(Merck Index),人的生長激素的化學式是C990H1529N263O299S7,跟植物的「生長激素」大大不相同,怎麼…

再談鳳梨謠言:提早採收是因為噴了「成長激素」?

說實在的,筆者談有關鳳梨的謠言已經談到不想談了;但是昨天(2016/5/28)聽女兒提起一個叫做什麼「台灣味道」(第二季)的節目,裡面竟然有種鳳梨的農民自己在黑其他的鳳梨農,說什麼「其他的農民因為有噴成長激素,所以鳳梨都要提早採收,不然會有酒味」,就讓筆者聽了一整個怒。

首先,現在已經沒有人在幫鳳梨噴生長素(auxin)了!至於什麼成長激素或是生長激素,更是沒有的事。這件事筆者的文章裡面已經講得清清楚楚,如果忘記了,可以再去複習幾次。
至於提早採收,是因為採收以後還要運輸到其他地方,所以一定會早點採收,不然運輸的時候就得放冷藏車,否則到零售市場一定會過熟!在遠足文化出版的「台灣的鳳梨」裡面也講得清清楚楚:「太早採收會影響品質,但採收得太遲,也可能有不耐儲運及老化、劣變等問題。一般而言,鳳梨的採收成熟度以果皮之轉色程度為指標,但轉色程度視採收時期、品種及果實質地(有經驗的農友可用果實敲擊反射音來判斷)而異,例如夏季可在剛轉色時採收,但冬季則應等到轉色達三分之二,甚至全轉色才採收,適口性才會比較好;又例如台農十八號及台農十九號的果實,在夏季時常有青皮黃的問題,如果等到轉色程度較高時才採收,則果肉已經過熟。」(第103頁)
讀者看到這裡,應該就了解,提早採收很難避免,至於提前多久,「若採收後立即或短期幾天內就要消費的果實,可在超過三分之一左右轉色後才採收,需經過一至兩週儲運後才消費的果實,則成熟度降低較適當。」(第103頁)
所以,提早採收跟有沒有噴什麼東東都無關,純粹是跟季節、品種、預計消費時間有關。說真的,個別的農友要怎麼種自己的農產品,大家都管不著;但是詆毀他人辛苦耕種的成果,這就可惡得很了。要讓自己的農產品銷路變好,應該要大家一起努力來開拓市場;而不是靠著造謠詆毀其他農友的心血!
參考文獻:
行政院農業委員會農業試驗所著。台灣的鳳梨。遠足文化出版。

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯(Ipomoea batatas)從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎?

上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔!

台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢!

至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉!

最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。

至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔!

如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔!

參考文獻:

蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。
行政院農委會。甘藷主題館