跳到主要內容

六千年前的大麥基因告訴我們的秘密

大麥。圖片來源:Wikipedia
看過大麥嗎?吃過大麥嗎?我想在台灣的朋友,應該都會對上面那兩個問題搖頭。雖然大麥(Hordeum vulgare L.)現在已經不再出現在餐桌上了,但是它其實是在同一時期跟小麥一起被馴化的穀物;也就是說,西亞文明是建立在大麥與小麥(二粒小麥,emmer)上的。

由於大麥比麵包小麥耐旱耐鹽,成熟期比小麥短,對肥份也不那麼挑剔,所以在肥沃月彎、雅典兩個文明的晚期,當土地因過度開墾與灌溉而逐漸鹽化、失去肥份時,大麥便取代了小麥(當時的小麥已經不是二粒小麥,而是麵包小麥了)成為主要穀物。

時至今日,我們對大麥的印象,已經從餐桌上的主食變為飼料;但其實大麥仍然是釀酒(尤其是啤酒)的必需成分。由於大麥含有兩種澱粉酶(α-與β-amylase),有它的存在,澱粉可以加速分解;另外在釀酒時,大麥的外殼可以形成天然的過濾層;所以雖然我們不再直接食用大麥,它卻以「轉一手」的方式,出現在我們的餐桌上(動物的肉、啤酒)喔!

最近這些年,隨著分子生物技術的突飛猛進,我們看到了許多生物的基因體相繼解碼;從1995年流感嗜血桿菌(Haemophilus influenzae)的基因體被解碼後,1996年啤酒酵母(Saccharomyces cerevisiae)成為第一個基因體被解碼的真核生物,然後在2000年的阿拉伯芥(Arabidopsis thaliana)、2001年人類基因體...

基因定序技術,隨著一次次的「練兵」也一日千里。但真正讓大家覺得大開眼界的是,古代生物的基因定序。

古代生物的基因定序之所以不容易,簡而言之,是由於我們的基因體(成分為去氧核糖核酸)也會持續遭受化學損傷與外來的輻射損傷;但當我們還活著的時候,身體有許多機制可以修復基因體,一旦我們呼出最後一口氣以後,修補機制也跟著停擺,於是損傷便開始累積。再加上,細胞也因為沒有能量可以維持基本的活動,而開始分解;最後,還有我們周圍的多數民族(細菌)們也會開始分解、吞食我們...所以能留下給我們定序的量實在是不多!也因此,在2010年,當帕波博士將尼安德塔人的基因體定序完成時,真的是非常的轟動啊!

相對於動物,古代植物的基因體似乎更不容易被保存下來!這是由於植物在構造上,因為缺乏了動物的骨骼等構造,使得它的基因體比動物更容易被分解。因此,雖然目前已有不少古代動物的基因體被定序,但能被定序的古代植物真的不多。

最近歐洲的研究團隊,從在以色列的朱迪亞沙漠(Judean Desert)的約拉姆洞穴(Yoram Cave)裡發現的大麥,將六千年前的大麥基因體給定序完成了。

得到六千年前的大麥的基因體序列,我們能知道什麼呢?

光是看它的序列,當然無法知道太多;不過,當研究團隊把它與馴化大麥以及現在仍在當地生長的野生大麥的基因體做比較時,就發現六千年前的大麥(下面簡稱為古大麥)的BTR1基因,與馴化大麥一樣有突變。這個基因,以及另一個稱做BTR2的基因,與大麥成熟後穀粒是否會馬上脫落有關;因此它們被認為與馴化相關。當地(黎凡特南部)的大麥品系,很多都帶有這個突變,所以這也顯示了這個大麥應該是當地的馴化品系。

而另一個基因VRS1的序列則讓我們知道,古大麥應該是二稜大麥(two-rowed barley)而非六稜大麥。由於大麥是自交作物,不同區域的大麥,在年復一年的種植之後,會累積一些區域性的變異;研究團隊比較了古大麥與許多現代大麥以及野生大麥的基因體後發現,古大麥與位於上約旦河谷的大麥親緣最接近。在考古學上,這一帶也被認為是大麥最早被馴化的地點。

不過,最讓研究團隊驚訝的是,古大麥與現代大麥的基因體並沒有太多不同。雖然肥沃月彎這一帶在古代是兵家必爭之地,但征服者似乎並沒有帶著自己的種源過來,而是選擇了使用當地的種源。究竟這意味著征服者也有不錯的農業知識水平,知道要種植在地穀物比較容易有好的收成;或者只是代表征服者本身不從事農業,選擇驅使當地農民來為他們耕作,就只能讓答案隨風而逝吧。

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

Martin Mascher et. al., 2016. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nature Genetics.

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

發光矮牽牛(petunia)即將於美國上市

  圖片來源: Nature 在1986年,第一株發光植物--發光的煙草( Nicotiana tabacum )問世了。那時候,就聽到有人說,或許有一天,我們可以讓路樹發光,那樣就不需要路燈,可以省下許多電費。 聽起來很棒,不是嗎? 今天的新聞提到,由 Light Bio公司 製造的「螢火蟲矮牽牛」(Firefly Petunia)即將在美國上市。事實上,美國本土48州已經可以預購了。 從發光煙草到螢火蟲矮牽牛,這條路走了將近40年。 對Light Bio的CEO與共同創辦人Keith Wood來說,這尤其意義非凡,因為他就是當初做出發光煙草的人。 但是,螢火蟲矮牽牛與發光煙草,完全是兩回事。 當初的發光煙草,是植入普通東方螢火蟲( Photinus pyralis )的冷光素酶(luciferase)。螢光素酶需要接觸到它的受質「冷光素」(luciferin),將冷光素氧化後才會發出冷光。所以,這樣的發光機制意味著,你要提供它冷光素,才會看到光。如果真想要把它拿來當作路燈,是非常不實用的。 不過,冷光素酶在生物科技上的應用非常廣泛。它被拿來當作所謂的「報告基因」(reporter gene)使用。科學家只要把相關基因的啟動子(promoter)後面接上冷光素酶的基因,就可以定量該啟動子在特定狀況下的表現量。 但是,對於想要看植物在黑暗中自己熠熠發光的人們來說,冷光素酶顯然不是選擇。 後來有從維多利亞多管發光水母( Aequorea victoria )中分離出來的綠色螢光蛋白(GFP,green fluorescent protein)。綠色螢光蛋白不需要受質,但是它需要光的刺激:395 nm和475 nm分別是最大和次大的激發波長。所以,要它發光,要額外提供給它395 nm的光波。這也是為什麼,之前曾經引起一波熱潮的螢光魚,需要購買特殊的燈管。 自然界會發出冷光或螢光的,也並不只限於螢火蟲與水母。還有一大群蕈類,也會發出螢光。即將上市的螢火蟲矮牽牛,其實是植入了小皮傘科(Marasmiaceae)的 Neonothopanus nambi 的整條螢光途徑。這個基因需要咖啡酸(caffeic acid)作為受質,不過植物本來就會合成咖啡酸,所以不是什麼大問題。 2023年9月,美國農業部核准了螢火蟲矮牽牛上市。為了要通過審查,Light