跳到主要內容

種皮的角質(cutin)幫助種子植物征服世界

各種不同的種子。圖片來源:wiki
全世界的植物大約有四十萬種,其中種子植物約有二十五萬種;但是我們放眼望去,大部分看得到的植物都是種子植物(Spermatophyte)。雖說種子植物是植物中最進化的一類,但是進化程度高也並不代表就一定能夠成為地表上的優勢物種。究竟為何種子植物能夠征服地球呢?

最近的研究發現,一部份的關鍵在種皮。種子植物具有不透水的種皮,使得種子內的胚胎可以熬過惡劣的環境,等待適當的時機再發芽成長。 種皮之所以不透水,是由於角質(cutin);角質主要由六種脂肪酸(如下),經由長鏈酰基輔酶A合成酶(long-chain acyl-CoA synthetase)、脂肪酰基ω羥化酶(fatty acyl ω-hydroxylases)以及甘油-3-磷酸O-酰基轉移酶(glycerol-3-phosphate O-acyltransferase)的共同作用,形成被稱為角質層(cuticle)的厭水性聚合物網絡來阻止水分進入。
角質的單體。圖片來源:葉綠舒
因為有角質層,使得植物的胚胎與外界隔絕,種子得以長時間保存。

不過角質層也並非百分之百防水、不透氣;因此,如果真的想要長久保存種子,還是把種子放在攝氏15度以及相對濕度40%的狀況下,是比較理想的(1)。

如果只是將種子放在抽屜的角落,隨著時間過去,由於空氣中的濕度的影響,種子的含水量也會逐漸上昇;而空氣也會慢慢的進入種子中,使得種子內的脂肪酸開始氧化。氧化的脂肪酸所產生的壓力(stress)、加上種子內部含水量的提高互為作用,最後種子就會逐漸失去活性。以擬南芥(阿拉伯芥,Arabidopsis thaliana)為例,在高溫高濕(攝氏40度,相對濕度85%)下,大約六天就會使得25%的種子失去活性。

在一般狀況下,種子要發芽,首先要先浸泡(imbibition)。由於有角質層的關係,當我們把種子泡在水裡,一開始看來好像沒有什麼變化;但由於角質層並非100%防水,隨著時間過去,水分慢慢進入種子,使得種子含水量上昇、細胞恢復活性,於是種子便萌發。以擬南芥為例,它的種子只有由一層細胞構成的胚乳(endosperm),其外則再由另一層死細胞所組成的種皮(testa)所包圍;泡水後24小時便可以觀察到種皮破裂(TR,testa rupture)緊接著就是胚乳破裂(ER,endosperm rupture)、胚根伸出(radicle protrusion)。

但是,並非只要將種子浸泡就一定會發芽。若提供浸泡後的種子不適當的光線、溫度或滲透壓,種子便不會發芽。過去的研究發現,這是由於吉貝素的合成受到壓抑,使得RGL2等與吉貝素相關的抑制因子累積,造成離層酸上昇所致。類似的效果,可以經由將種子與吉貝素合成抑制劑多效唑(PAC,paclobutrazol)一同浸泡來達成。

最近,瑞士日內瓦大學的研究團隊,想要了解更多種子發芽的機制。於是他們用微陣列分析(microarray)來比較野生種與rgl2突變株在有多效唑的環境下,種子的基因表現情形。結果發現,在457個只在rgl2突變株中高量表現的基因裡面,赫然出現了19個與角質合成有關的基因,包括了GPAT4CYP86A2以及BDG1等(2)。

於是研究團隊找到了這些基因的突變株,研究它們的種子是否較野生種不耐儲存。顯微鏡下的觀察也發現,相對於野生種的胚乳外層有一片極厚的角質層(約為葉片角質層的10倍厚度),突變株的角質層則呈現極度不規則的狀態。除此之外,這些無法合成角質的植物,它們種子的氧化脂肪酸累積的較野生種快速。而且,突變株種子在有多效唑的環境下浸泡,種皮還是會破裂。浸泡實驗也發現,突變株對甲苯胺藍(toluidine blue)染劑的滲透性明顯較野生種為高。

最重要的發現是,突變株的種子相對不耐儲存:野生種在高溫高濕的環境下六天,還有75%的種子能夠發芽,突變株卻只剩下15%的發芽率。

研究團隊認為,在種子發芽初期,當吉貝素的量不是那麼充足的時候,角質層(cuticle)的存在可以抑制胚胎過度開展與種皮提早破裂。這個機制的存在可能是為了保護胚胎,因為胚胎不像種子可以抗乾、抗熱,也無法在無光的狀況下存活很久。因此,當吉貝素的量不足時,植物要能夠先確保胚胎不會「提早復活」是很重要的,因為在這個階段,由於吉貝素的分泌不足,使得負責分解種子的胚乳或子葉的養分的酵素尚未活化,如果這時候胚胎就「復活」,便會因為養分不足而死亡。角質(層)在這個階段,阻擋了大部分的水分進入,使得脆弱的胚胎可以等到胚乳(子葉)細胞完全活化、並開始提供養分的時候,再恢復活性 -- 這使得種子植物的胚胎比其他植物更容易存活在這瞬息萬變的世界裡,再加上每顆種子都帶著媽媽(親本植物)給它們的愛心便當,也就難怪種子植物可以征服世界了!

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

1. 郭華仁著。2015。種子學。台大出版中心。

2. De Giorgi J, Piskurewicz U, Loubery S, Utz-Pugin A, Bailly C, Mène-Saffrané L, et al. (2015) An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination. PLoS Genet 11(12): e1005708. doi:10.1371/journal.pgen.1005708

留言

這個網誌中的熱門文章

植物是地球的能量工廠

地球上最重要的反應應該就是光合作用(photosynthesis)了,就如植物的頂芽生長點是地球上最重要的組織一般。這是由於地球上的異營生物無不依靠自營生物作為直接或間接的食物來源,而自營生物的養分幾乎都是由光合作用而來。
葉片是獲取能量的小尖兵
自營生物的器官衰老是非常複雜的機制。在秋天撿起一片地上的黃葉,與仍在樹梢上翠綠的葉子相比,會發現黃葉的重量較同等大小的綠葉輕很多;這是因為植物會將衰老葉片中剩餘的、可利用的物質分解後運回,提供其他組織再運用。不若異營生物,由於每一個器官、組織都需要由自己生產的能量來製造,因此自營生物在淘汰老廢器官與組織時,一定會將殘餘的養分盡可能的回收。汰舊換新對所有生物都是一整年的工作,但對於多年生的落葉樹來說,每年春秋二季會發生大規模的迎新去舊,是它們一年兩次的大工程。
當時序慢慢進入秋天時,植物體內可藉由光敏素(phytochrome)感應逐漸加長的黑夜。光敏素是由兩個多肽組成的雙體(dimer),每個多肽有一千多個氨基酸那麼長,並加上一個色素分子(phytochromobillin)。光敏素將季節的信息送到頂芽,頂芽便開始進入休眠;其它的葉片啟動衰老機制、將可以回收的養分盡量回收之後,隨著連接葉柄與莖的薄壁細胞死亡,毫無生氣的葉片因自己重量的垂墜,被拉離開植株,飄落到地面。
這一切雖然看似與光合作用無關,但它卻是背後的影武者。在夏季的尾聲,隨著日照時間減少,植物能進行光合作用的時間縮短;同時,因為太陽的角度逐漸偏斜,在有限時間內,植物能捕捉到的光能也逐漸減少。以經濟的角度來看,光合自營生物此時若仍維持著龐大數量的葉片,並不是一種聰明的做法;於是有些樹木選擇將葉片中的養分回收儲存,同時降低所有的活動來過冬。等到冬去春來,可進行光合作用的時間變長了,加上太陽的角度逐漸轉正,植物以光敏素覺察到黑夜時間逐漸縮短,新芽便開始萌發,葉綠素的合成與葉綠體的發育,讓新生的葉片抹上了一層層的綠意。
由此可知,光合作用需要捕捉光能、以及將光能轉換為化學能的「用具」,並且,這些用具要能夠被恰當地放置在可以接收到足夠光能的地方。除了少數因為生活環境而必須修改基本設計的植物以外,絕大多數植物執行光合作用的主要部位是葉片;而葉片中用來捕捉光能的用具就是光系統(photosystem)。
抽絲剝繭光系統的運作
在葉綠體的類囊體膜(stromal membrane)上,可以…

孔雀秋海棠的光合作用魔術

原產於馬來西亞雨林的孔雀秋海棠(Begonia pavonina),只有在光線極弱的狀況下葉片會出現藍色。當光線夠強的時候,葉片上的藍色就不會出現了。

因為這藍色是如此的美麗,使它得到了「孔雀秋海棠」(peacock begonia)的美名。大家搶著種它,想要看到那美麗的孔雀藍;但到底為什麼要出現這美麗的孔雀藍呢?

通常我們都認為,在葉片裡面除了葉綠素以外的光合色素,都是輔助色素:在光線不夠時,幫忙吸收更多光能;在光線太強時,把多餘的能量發散。所以孔雀秋海棠的孔雀藍,是否也是一種輔助色素呢?

之前的研究已經發現,這些孔雀藍,應該是來自於被稱為虹彩體(iridoplast)的一種色素體(plastid)。虹彩體位於葉片上表皮的細胞中,為葉綠體的變體。在最近的研究發現,這些虹彩體的類囊體(thylakoids)以一種不尋常的方式排列:每疊葉綠餅(grana)由三到四個類囊體組成,厚度約為40奈米;而一疊一疊的葉綠餅之間的距離約為100奈米。


一般的葉綠體,通常葉綠餅的排列是散亂的(如圖);孔雀秋海棠的虹彩體的葉綠餅卻排得如此整齊,有什麼作用呢?

研究團隊測量了20個虹彩體,發現它們的特殊構造賦予它們反射435~500奈米的光波的能力。這個波長正好就是藍光波段的最右邊,與綠光交界的位置。這就是為什麼孔雀秋海棠是藍色的原因吧!

不過,這些虹彩體不只是會反射藍光而已。研究團隊還發現,虹彩體讓孔雀秋海棠吸收較長波的綠光與紅光的能力提升了!這對孔雀秋海棠是非常重要的,因為它們通常在熱帶雨林的地面上生長。

在熱帶雨林裡,光線都被大樹給遮住了,使得地表的光線極弱。弱到怎樣的地步呢?大約是樹冠光線強度的百萬到千萬分之一喔!而且還不只是光線變弱而已,因為雨林中的大樹們把進行光合作用所需的兩個主要波段的光(460奈米與680奈米)都吸收得差不多了,在這樣的環境下,孔雀秋海棠如果不發展出吸收一點綠光的本事,還真的會混不下去。

事實上,因為這些特殊的構造,虹彩體比一般的葉綠體進行光合作用的效率更高。研究團隊藉著測量葉綠體的螢光(葉綠體進行光合作用時,一部份的葉綠素會把吸收的光以暗紅色的螢光發射出去;所以可以藉著測量螢光了解植物進行光合作用的效率)發現,虹彩體進行光合作用的效率,比一般的葉綠體都好。不過,當光線變強的時候,虹彩體的效率就沒有那麼好了;這或許就是為何,當我們把孔雀秋海棠種在光線…

【原來作物有故事】鳳梨 漂洋過海在臺灣發揚光大

作者:葉綠舒、王奕盛、梁丞志

在台灣提到鳳梨,一定會想到鳳梨酥這代表台灣的伴手禮。但是鳳梨其實不是台灣原產的水果喔!鳳梨原產於熱帶南美洲,在哥倫布1493年的第二次航行時於瓜德羅普的村莊中發現後引進歐洲,約於16世紀中葉傳入中國;台灣則是在1605年先由葡萄牙人引進澳門,再由閩粵傳入台灣,至今已有三百多年歷史。

在台灣,鳳梨因為台語諧音「旺來」很吉利而廣受大眾喜愛,但其實鳳梨的名字是根據它果實的型態來的,因為果實的前端有一叢綠色的葉片,讓以前的人覺得很像鳳尾,加上果肉的顏色像梨,所以就取名為「鳳梨」。至於英文的名稱也是因為果實的外型像毬果、而肉質香甜,所以就被取名為「松蘋果」(pineapple)啦!其實鳳梨果實的毬果狀的外觀主要是因為鳳梨是「聚合果」,每顆鳳梨是由200朵鳳梨花集合而成的!而它的學名Ananas則是來自於圖皮語,意思是很棒的水果。

在哥倫布把鳳梨引進歐洲以後,因為它的香甜好滋味讓它大受歡迎;但是身為熱帶水果的鳳梨,在溫帶的歐洲長得並不好!為了要讓王公貴族們吃到鳳梨,十六世紀的園丁們發明了「鳳梨暖爐」:把單顆鳳梨放在由馬糞堆肥做的暖床上的木製棚架,並升起爐火來保持溫暖,好讓鳳梨這熱帶植物可以在溫帶的歐洲開花結果;世界上第一個溫室就這樣誕生了,並由此開啟了歐洲建造溫室的熱潮!

鳳梨不只是改變了歐洲,在日本人到台灣後,嚐到了鳳梨的香甜滋味,便開始推動鳳梨產業。1903年,岡村庄太郎於鳳山設置岡村鳳梨工廠,生產鳳梨罐頭;後來逐漸形成中部以員林、南部以鳳山為中心的鳳梨生產體系。在1938年時,鳳梨罐頭工廠女工竟然佔了全台灣女性勞動人數三分之一以上呢!光復以後台灣的鳳梨產業也曾在1971年登上世界第一,讓台灣被稱為「鳳梨王國」。但是後來不敵其他國家的競爭,已經由外銷罐頭改為多以內銷鮮食鳳梨為主的型態了。

從清朝、日治時代直到現在,台灣的鳳梨品系一直都一樣嗎?當然不是囉!最早的鳳梨被稱為「在來種」,後來日治時代為了製作罐頭方便,從夏威夷引進了開英種;到了1980年以後,因為罐頭外銷敵不過競爭,台灣的鳳梨改為內銷且以鮮食為主,為了挽救鳳梨產業,農改場、農試所便培育出各種不同適合鮮食的鳳梨:包括不用削皮可以直接剝來吃的釋迦鳳梨(台農4號),最適合在秋冬生產的冬蜜鳳梨(台農13號),有特殊香氣的香水鳳梨(台農11號),以及因為果肉乳白色被稱為牛奶鳳梨的台農20號等…