跳到主要內容

僵屍植物的秘密

被植物菌質體(phytoplasma)感染的紫錐菊。
圖片來源:wiki
僵屍大家聽過,大家可能也知道有種真菌可以製造僵屍蟻,讓被感染的螞蟻不再認真工作,反而爬出蟻窩,尋找一片距離地表比較近的樹葉,咬下一口,然後死掉。接著真菌的子實體就會從螞蟻的頭部長出來...達成傳播真菌孢子的唯一任務。但是僵屍植物?可能很少人聽過吧?

僵屍植物是由植物菌質體(phytoplasma)製造的。黴漿菌(mycoplasma)大家可能都聽過,但有多少人聽過植物菌質體呢?

植物菌質體跟黴漿菌類似,都是沒有細胞壁的生物。只是黴漿菌除了可以可以感染動物以外,也可以進行腐生;但植物菌質體只能作為植物的病原菌。它是植物的寄生菌,藉由葉蟬、飛蝨等吸取篩管汁液的害蟲作為媒介來感染植物。感染後,植物後會造成植物光長葉子不長花,長出來的葉子也很畸形(如圖中的紫錐花)。

被植物菌質體感染後的植物,因為光長葉子(葉狀體)不長花,這些葉子的功能就是用來產生更多的植物菌質體,因此它們被稱為「僵屍」植物(zombie plants)。由於被感染的植物無法開花,往往造成植物就此被「絕後」了。

究竟植物菌質體是怎麼造成僵屍植物出現的呢?過去曾認為是因為感染造成植物賀爾蒙不平衡;但是最近對於植物菌質體的研究發現,植物菌質體本身會產生一個稱為SAP54的蛋白質,這個蛋白質在構造上與植物用來啟動開花機制的蛋白AP1或SEP家族等MADS轉錄因子(MADS-domain transcription factor)非常相似。

這個家族的轉錄因子,會經由互相結合形成雙體(dimer)或四元體(tetramer)之後,再與DNA結合來調節跟花器發育相關的基因表現。當這個家族的蛋白質被SAP54蛋白牽制住以後,會因為無法與DNA結合,導致它們被泛素化(ubiquitination)後再送到26S蛋白質體(26S proteosome)去分解。這麼一來,相關的基因無法表現,使得植物的花變成了葉狀體。

SAP54是如何牽制了AP1/SEP家族呢?研究團隊以電腦模擬分析SAP54的蛋白質結構以後發現,SAP54的結構與SEP3最相似,表示SAP54很可能是經由直接與AP1/SEP家族的蛋白質們互動,使它們無法與應該結合的家族成員結合(一種狸貓換太子的概念?)。當研究團隊把SAP54與AP1/SEP蛋白放在酵母菌裡面時,也看到SAP54與AP1兩個蛋白質之間有互動。由於如AP1/SEP這類的蛋白質很少與其他蛋白互動,這讓研究團隊對於SAP54這個植物菌質體的基因,究竟是源自於植物與否,感到非常有興趣。

要研究SAP54的來源,最簡單的方法就是進行序列比對。SAP54這個蛋白質可以分成兩個部分,一個部分是讓SAP54蛋白可以被分泌出去,另一部份則是與AP1/SEP蛋白互動的部分。以氨基酸序列來分析比對後發現,分泌部分只有21%的相似度,而互動的部分則除了電腦模擬的結構相似以外,本身的序列相似度極低!這顯示了,SAP54應該不是來自於植物,而是植物菌質體本身為了更有效的感染植物、指揮植物為自己做工,所產生的分子趨同演化(convergent molecular evolution)的結果。

話說一物剋一物,植物菌質體演化出了SAP54,怎麼植物沒有來個「我變、我變、我變變變」,把AP1/SEP家族的蛋白質給變掉呢?推測可能是因為,這個家族的成員之間互動非常複雜,而且成員繁多(擬南芥裡面就有40個),只要變一個,其他好幾個就要跟著變,然後接著更多個還要再變...所以雖然被SAP54吃死死,也只能忍氣吞聲了!畢竟40個基因要做出相對應的變化,即便只是10個或20個,也是「不可能的任務」啊!只要有一個沒變好,植物就等於是「引刀自宮」了...

也就是因為這樣,植物菌質體的宿主專一性很低(OS:我已經開發出指揮植物的魔杖了!),被它感染的植物的花都會變成葉狀體。有趣的是,植物菌質體的基因體極小,但其中還有20%是重複的序列。不知道這樣的基因體結構再加上「魔杖」,是否就是造成它可以戰無不勝、攻無不克呢?

雖然,看來好像SAP54似乎就是植物菌質體製造僵屍植物的關鍵;不過,植物菌質體感染除了會使得植物光長葉子不開花以外,被感染的植物也會長得比較矮小。除此之外,有些病毒的感染也會使植物光長葉子不開花,所以,究竟植物菌質體與植物之間的互動是怎麼一回事,以及僵屍植物的產生是否都是經由類似的機制,還需要進一步了解。

本文版權為台大科教中心所屬,其他單位需經同意始可轉載)

參考文獻:

Rümpler F et al. Did convergent protein evolution enable phytoplasmas to generate ‘zombie plants’? Trends in Plant Science, October 2015 DOI: 10.1016/j.tplants.2015.08.004

留言

這個網誌中的熱門文章

為什麼「種豆南山下,草盛豆苗稀」?

陶淵明在「歸園田居」詩中,曾經提到「種豆南山下,草盛豆苗稀」。這首詩大家都很熟了,也是很受歡迎的國文教材,但是,有多少人認真去想為什麼「草盛豆苗稀」呢?難道只是因為陶淵明不會種田嗎?

雖然根據歷史的記載,「歸園田居」可能真的就是在他剛隱居的時候寫的(1);而在那時候,可能他的耕種技術也的確是還有待提升;不過筆者卻認為,從生物學的角度來看,「草盛豆苗稀」也不全是耕種技術的問題。

首先,我們來看一下氣候。陶淵明隱居的地點在潯陽柴桑,也就是現在的江西省九江市星子縣。當地是北緯29.44度,在北回歸線以北,屬於濕潤型亞熱帶氣候(2),1971-2000的年平均溫度為攝氏17.03度,每年四月就不再有攝氏零度以下的低溫(3)。雖然還是比臺灣偏北(台北市是北緯25.02度),大致上還是屬於溫和的氣候,植物的種類應該也不會相差太多。即使考慮近年來全球暖化的問題,應該也不會超過攝氏一度(4)。

在亞熱帶的台灣,夏天通常並不是植物茂盛生長的時期。為什麼呢?因為世界上90%的陸生植物是C3植物,這些植物在氣溫超過攝氏30度時,會因為光呼吸作用(photorespiration)造成水分的消耗大量上昇。C3植物(如大豆)在攝氏30度時,每抓一個二氧化碳分子就要消耗833個水(5),於是植物的生長速度就開始變慢。

不過,並不是所有的植物在夏天時生長速度都會變慢唷!有些植物,如玉米、甘蔗等,反而在夏天時長得特別好。為什麼呢?

原來玉米與甘蔗是所謂的C4植物,它們既耐熱又耐旱,跟C3植物比較起來,在攝氏30度時C4植物每抓一個二氧化碳的分子只消耗277個水(5),所以夏天的時候,它們的生長速度ㄧ點都不受影響呢!
說到這裡,讀者可能會想:什麼是C4植物?為什麼它們能夠既耐熱又耐旱呢?
所謂的C3、C4植物,指得是它們在光合作用上的不同。C3植物進行光合作用時,是由卡爾文循環(Calvin cycle)的酵素(RuBisCo,如圖二)直接抓取溶解在細胞中的二氧化碳,與核酮糖1,5-二磷酸(ribulose 1,5-bisphosphate,RuBP)進行反應;


而C4植物則在卡爾文循環上面,又增加了幾個步驟,而且這幾個步驟還跟卡爾文循環在不同的組織中進行呢(如圖三)!為什麼會這樣呢?


原來,C4植物多半都生活在亞熱帶或熱帶,在這些氣候區,植物進行光合作用時,會遇到一個大問題。

這個問題來自於卡爾文循環的第…

【原來作物有故事】麵包樹 熱帶果實引發電影傳奇

第一次聽到麵包樹的名字,是在小學的校園裡。當時老師說麵包樹雖然果實真的長得像麵包,但因為台北太冷了,原生於熱帶的它沒辦法在台北開花結果。

後來在花蓮當老師時,發現學校餐廳夏天有時會出現一種特別的蔬菜湯:裡面有黃色果肉、白色種子的「菜」。在地的同事告訴我,那叫做「巴吉魯」,也就是麵包樹的果實。

花蓮的夏天總是不缺「巴吉魯」,不只市場裡有賣、有些人家的院子裡就有麵包樹。在地的朋友說,成熟的果實削皮切塊加點小魚乾煮湯很好喝,長不大的果實(雄花花序)用來燃燒驅蚊,據說比蚊香還有效。

麵包樹是桑科波羅密屬的多年生大型喬木,花為單性花,雌雄同株;果實是由30-68朵雌花所形成的多花果。麵包果通常在採收後五天到一週內食用最好吃,如果冷藏可以保存二到三週。

目前的研究認為麵包樹源自大洋洲新幾內亞、馬來半島、與西密克羅尼西亞。台灣的麵包樹原生於蘭嶼。在蘭嶼,麵包樹稱為“chipogo”,達悟族人用於製作船首、船尾板、坐墊,及住屋用的宗柱、主屋之踏腳板與木笠、木盤等用具,而分泌的乳白色汁液具黏性,可以當作粘接劑。

達悟族較少食用麵包果,倒是台灣東部的阿美族與太魯閣族經常拿麵包果來吃;不過太平洋群島上最常見的吃法應該是將麵包果放在鋪了葉片的坑洞內發酵成可以放二、三年的「果醬」。由於太平洋群島夏季常有颱風,這些「果醬」對各地原住民們是颱風後很重要的緊急糧食。既然麵包樹這麼重要,「南島語族」(包括台灣的原住民)不論坐船到哪裡,總是帶著麵包樹的種子。所以,麵包樹在太平洋各群島上是常見的風景。

第一個看到麵包樹的歐洲人應該是十六世紀末到十七世紀初的葡萄牙航海家佩得羅‧費爾南德斯‧德‧基羅斯。比他晚將近一百年的英國航海家威廉‧丹皮爾船長,他提到麵包樹的果實可以烤來吃。

到了十八世紀,麵包樹突然搖身一變成了「神奇糧食」。到底發生了什麼事呢?原來在1769年與庫克船長乘「奮進號」的英國植物學家班克斯爵士在大溪地看到了麵包樹,因為麵包樹的果實約有四分之一為澱粉、在熱帶地區又長得很好,使班克斯認為麵包樹可能是解決英國在牙買加殖民地奴隸營養問題的解答。於是在1787年,英國皇家科學院派遣邦迪號前往大溪地收集麵包樹帶到加勒比海群島種植。為了這個目的,船上還有一位隨船的植物學家大衛‧尼爾森。

原訂於8月16日出發的邦迪號,因為一連串的延遲,最後終於到了大溪地、收集了足夠數量的麵包樹以後,卻在因為船長布萊一路…

通風報信的植物

植物受傷時會有什麼反應?過去的研究讓我們瞭解,當植物被攻擊(受到病原菌感染、受傷)時,會釋放出揮發性有機物質(VOCs,Volatile Organic Compounds),讓自己以及附近的植物啟動防禦機制。這個作用有點像古代的烽火臺,當敵人來襲就燒起狼煙,附近的人看到狼煙就知道這裡出事了,要加強戒備。

不過,當附近的植物感應到VOCs時,它們會如何加強自己的防禦機制呢?過去的實驗發現,當植物的地上部位受到病原菌感染時,會傳遞信號給自己的根,接著根部的鋁活化蘋果酸運輸蛋白(ALMT1,aluminum-activated malate transporter)便會活化後釋放蘋果酸(malate)到土壤中來召喚枯草桿菌 UD1022(Bacillus subtilis UD1022)這隻植物的益菌。這些現象是否不僅僅發生在苦主、也發生在附近的植物身上呢?

康納(Connor Sweeney)和他在德拉瓦大學的指導教授,最近發現:不只是受傷的植物本身會進行這些防禦機制、附近的植物也會呢!

康納是德拉瓦州(Delaware)的高中生。他因為對科學有興趣,寫了e-mail給德拉瓦大學(University of Delaware)的白斯教授(Harsh Bais),表達希望能進他的實驗室學習。當白斯老師回信說「OK」的時候,康納高興得不得了。

於是他就開始了他的實驗室生活:下課後、週末以及暑假,康納都在白斯老師的實驗室裡種阿拉伯芥(Arabidopsis thaliana)。雖然他也是高中的游泳校隊,但他盡可能地投入時間作實驗。

成果是豐碩的。兩年後,康納在白斯教授的指導下,解出了植物接到鄰居的「狼煙」以後,接下來做了什麼;他們的成果發表在2017年的「植物科學前鋒」(Frontier in Plant Science)期刊上。

以一個高中生來說,這可是個非同小可的成就;康納不只是付出了許多努力,他也細心觀察每一個實驗。因為他夠細心,所以才沒有錯失了重要的發現。

這個重要的發現是什麼呢?有一天他如常地進行實驗:把一株阿拉伯芥用鑷子弄了幾個傷口,準備明天觀察它的反應。不同的是,這次旁邊有一株阿拉伯芥沒有被他弄傷。

第二天他看到了令他不敢相信的結果:旁邊的阿拉伯芥的主根變長、而且還長出了不少側根。

於是他們做了更多測試。他們發現:旁邊有受傷的伙伴的小芥們,主根生長的速度大約…