跳到主要內容

地熱區(Geothermal field)有什麼植物?

北投地熱谷。圖片來源:Wiki

去過北投的地熱谷嗎?地熱谷的形成是因為過去大屯火山區曾經發生火山活動,雖然現在火山活動已經停止,但是地底下仍然有岩漿庫,所以存在於地層孔隙中的地下水,就被被高溫的岩漿庫加熱,於是就形成了溫泉。當然不是所有的地熱區都有溫泉,不過北投地熱谷的確是溫泉區。筆者小時候去過,當時只是震懾於那蒸騰的溫泉所形成的奇景、完全沒有注意旁邊有沒有其他不一樣的事物⋯(還有就是想煮蛋)

或許有些人跟筆者一樣(誤),不過並不是所有的人都是這樣的。在不同的國家裡都存在著一種人,他們對於什麼樣的植物能生長在地熱區非常感興趣,也針對這些地熱區進行了許多調查。由於地熱區下方都有岩漿庫,所以越往下溫度就越高,這使得大部分能長在地熱區的植物都是淺根的,如苔蘚、地衣之類。能夠長在地熱區的維管束植物,頂多就是矮小的灌木而已。

但是位於紐西蘭北島的陶波火山區(Taupo Volcanic Zone)不大一樣。主要覆蓋陶波火山區的植被是木本維管束植物。因此,紐西蘭的研究團隊決定要進行當地的植被調查。

除了調查植被狀況之外,當然也要一起探勘土壤的溫度(地表下十公分)以及土壤的狀況。為什麼要瞭解土壤的狀況呢?因為在許多地熱區都有共同的特點,受到火山活動的影響,地熱區的土壤普遍偏酸或偏鹼、含有較高量的特定金屬離子(如鋁)等。

研究團隊依九種不同的植被單位,挑選了20個區進行調查。平均而論,當地的土壤屬於強酸性(pH值 4.3),有很高量的鋁(77 mg/kg)及硫(2347 mg/kg)。土壤平均溫度為攝氏24.8度,但不同區塊間落差甚大,最低的為攝氏7度、最高的是攝氏98.5度。

在這些地區找到的維管束植物中,大部分還是當地常見的植物。其中分布較廣的是昆士亞屬的 Kunzea tenuicaulis、貝葉石楠屬的 Leucopogon fasciculatus、薄子木屬的 Leptospermum scoparium這三種灌木;超過五分之一的區塊都可以看到它們的出現。除此之外唯一可見的樹木是萬靈木屬的 Weinmannia racemosa。除了這些以外,還有同屬於薄子木屬的 L. fasciculatus L. scoparium,林檎石南屬的Leptecophylla juniperina,以及茜草科的 Coprosma rhamnoides等。

能耐攝氏72度高溫的植物包括了梨蒴脆枝曲柄藓 (Campylopus pyriformis),而石松家族的過山龍(Lycopodiella cernua,又名舖地蜈蚣、石壁草、鹿茸草)則可以生長在攝氏68度的環境。

這些植物有些是淺根的,有些在當地也發展出了屬於自己的生存策略:它們的根由往下改為往左往右。也就是說,根雖然紮得不深,卻很廣。這個現象在沙漠植物裡也看得到,不過沙漠植物是為了要在很短的時間裡吸收大量的水分而發展出這個策略,所以型態雖然很類似,目的卻不大相同。

這些年因為對能源的需求,地熱區逐漸地被開發;這也影響到了這些植物的棲地。畢竟,有些生長在地熱區的植物可能是嗜熱生物,無法在一般的環境下生存;因此對於地熱區的植被進行調查是必要的。

下次去地熱區遊覽的時候,可以留意看看是否有苔蘚類與灌木以外的植物生長!

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

M.C. Smale et. al., A classification of the geothermal vegetation of the Taupo Volcanic Zone, New Zealand. Journal of the Royal Society of New Zealand, DOI: 10.1080/03036758.2017.1322619

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N