跳到主要內容

農業可能起源於兩萬三千年前

人類什麼時候開始學會種田的?考古學的證據,說是一萬兩千年前。

不過,最近在加利利海濱(Sea of Galilee)的發現,可能要把這個時間往前推個一萬一千年!

怎麼說呢?

當考古學家找到可能的古文明遺跡時,要怎麼判別「古人」們是過著狩獵/採集生活,或是農耕生活?

在遺跡發現植物的種子/果實並不能代表古人的確已經開始種田,頂多意味著他們會把種子/果實帶回居住地食用或保存;如果在遺跡發現的種子/果實的大小、型態與野生種有別,這當然就代表著,住在這裡的居民們過著農耕生活。

這是所謂的「馴化症候群」(domestication syndrome)。由於人類有意識或潛意識的選擇,使得動/植物在被人類馴化後,型態會產生變化:如植物可食的部位(果實、葉片或根/塊莖)變大、動物則會出現體型變小以適應圈養的生活形態等。

但是這些變化並非一蹴可幾,而是要歷經數十代乃至數百代的繁殖與選拔才能達成。因此,是否有可能當我們發現古人類的遺跡時,雖然他們已經開始種植植物,但這些植物仍近似於野生種,使我們下了錯誤的判斷,認為他們還過著狩獵/採集的生活呢?

當然無法排除這個可能性,所以來自以色列的研究團隊開發了另一個判斷的標準:雜草!

雜草?是的。雖然農夫們提到雜草無不恨得牙癢癢的,但是這些農夫欲除之而後快的有害植物,其實也是在我們的農耕行為中,跟農作物一起演化出來的。

怎麼說呢?人類在種田的時候會翻土、施肥。翻土破壞了土壤結構,施肥使得土壤中的有機質組成改變。翻土破壞了土壤結構,使得植物為了適應翻鬆的土壤,必需要發展出快速的吸水能力;而施肥會使土壤中的特定礦物質(尤其是氮元素)大大增加。雖然氮元素是植物生長所必需,可是也並非所有植物都喜歡高氮的環境。

因此,人類在開始農耕後選出來的農作物品種,當然都是吸水能力佳、喜愛高氮肥環境的農作物;而能夠在農田裡活下來、與農作物競爭一席之地的雜草,當然也要發展出這些能力,而且一定要有過之而無不及,否則便不能與農作物一較長短囉!

但是很少研究者注意到雜草,或者說,試圖去研究雜草的演化。雖然大家都同意,在古文明的遺跡附近,如果伴隨著雜草種子大量出現,代表古人很有可能曾經在這個地區進行過農業行為;但是究竟雜草在何時何地發源,大家還是沒多大興趣。

在這篇研究裡,研究團隊們找到了位於加利利海濱的Ohalo II。這個區域在過去一直都被水淹沒,直到連續幾年的乾旱使得湖水大幅下降後,才在1989年被發現。歷經六個季節的挖掘(1989-1991,1998-2001),研究團隊在當地找到六間小屋,其中四間非常仔細的研究過。

因為過去一直都被淹沒在水中,因此這個遺址保存得非常完整。在這些小屋中、以及周圍,研究團隊找到了大約有十五萬顆的種子。其中,超過三分之一是屬於禾本科(Poaceae),包括了野生的二粒麥(emmer wheat)、大麥(barley)與燕麥(oat)。小屋中也有將種子磨粉的工具,而許多種子就散佈在磨粉工具的周圍。

由垃圾堆裡面出現的候鳥的遺骸以及小屋中儲存的植物果實/種子,研究團隊認為,這裡的居民是定居社群。甚至還出現了家鼠(Mus musculus)與大鼠(Rattus rattus)呢!

在這十五萬顆種子中,有十分之一的種子來自十三種雜草。其中有九成三是毒麥(Lolium temulentum,darnel)以及玉米殃(Galium tricornutum)。

毒麥。圖片來源:Wiki

這兩種植物是田裡常見的雜草,尤其是毒麥,因為結果前的型態與小麥極為相似,因此也被稱為「假麥」(false wheat)。農夫們對它深惡痛絕,因為當它被Neotyphodium屬的真菌感染後,果實會產生生物鹼(loline alkaloid),如果誤食會導致中毒,嚴重可以致命!因此,在收穫前必需要特別留意將它拔除。

這些雜草也曾在目前公認最早的農業發源地黎凡特(Levant)發現,但由於黎凡特附近找不到這兩種雜草,表示這兩種雜草可能並不是發源在當地。在Ohalo II發現大量的毒麥與玉米殃,顯示這兩種雜草可能的確是發源於此。

除了毒麥與玉米殃之外,研究團隊還辨認出了另外四種雜草:藜(Chenopodium album)、小花錦葵(Malva parviflora)、敘利亞薊(Notobasis syriaca)與水飛薊(Silybum marianum)。這四種雜草也是目前當地常見的雜草。

除了雜草以外,當然其它的九成都是農作物囉!除了前面提到的二粒麥、大麥、燕麥之外,還有豌豆、扁豆、杏仁、無花果、葡萄與橄欖。但是究竟有多少是來自人類的農業行為,有多少是採集而來就不得而知了。不過,研究團隊觀察到,有四分之一的二粒麥以及三成六的大麥的穗軸(rachises)出現馴化的禾本科植物的特徵:粗糙的斷裂痕跡。

野生種與馴化種的穗軸。
圖片來源:Plant Physiology and Development, 6th ed.

由於人類在馴化植物的過程中,無意識地選擇了不會落果的突變種。但是野生種禾本科植物,在果實成熟後就會自然掉落。這是因為穗軸上有由薄壁細胞構成的離層(abscission zone),在果實成熟後就會自然衰老萎縮,讓果實掉落以完成傳播的目的。但是會落果的品種不利於收穫,因此在馴化的過程中,最後留在人類手中的是不落果的品系。不會落果當然在收穫後就需要把種子由穗軸上「打」下來,而這個過程會使得穗軸出現粗糙的斷裂痕跡。

過去的認定是,只要在遺址找到的農作物有十分之一出現這樣的特徵,大家就承認這些植物已被馴化。因此,在Ohalo II找到的大麥與二粒麥,應該的確是馴化的品系無誤。

綜合了所有這些證據,再加上研究團隊在當地小屋中找到燧石製成的鐮刀,在在都顯示了,Ohalo II的確有農業行為;而馴化品系的出現,也將農業起源的時間往前推了一萬一千年!

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

Snir A, Nadel D, Groman-Yaroslavski I, Melamed Y, Sternberg M, Bar-Yosef O, et al. (2015) The Origin of Cultivation and Proto-Weeds, Long Before Neolithic Farming. PLoS ONE 10(7): e0131422. doi:10.1371/journal.pone.0131422

Plant Physiology and Development, Sixth Edition by Lincoln Taiz, Eduardo Zeiger, Ian M. Møller, and Angus Murphy, published by Sinauer Associates

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

發光矮牽牛(petunia)即將於美國上市

  圖片來源: Nature 在1986年,第一株發光植物--發光的煙草( Nicotiana tabacum )問世了。那時候,就聽到有人說,或許有一天,我們可以讓路樹發光,那樣就不需要路燈,可以省下許多電費。 聽起來很棒,不是嗎? 今天的新聞提到,由 Light Bio公司 製造的「螢火蟲矮牽牛」(Firefly Petunia)即將在美國上市。事實上,美國本土48州已經可以預購了。 從發光煙草到螢火蟲矮牽牛,這條路走了將近40年。 對Light Bio的CEO與共同創辦人Keith Wood來說,這尤其意義非凡,因為他就是當初做出發光煙草的人。 但是,螢火蟲矮牽牛與發光煙草,完全是兩回事。 當初的發光煙草,是植入普通東方螢火蟲( Photinus pyralis )的冷光素酶(luciferase)。螢光素酶需要接觸到它的受質「冷光素」(luciferin),將冷光素氧化後才會發出冷光。所以,這樣的發光機制意味著,你要提供它冷光素,才會看到光。如果真想要把它拿來當作路燈,是非常不實用的。 不過,冷光素酶在生物科技上的應用非常廣泛。它被拿來當作所謂的「報告基因」(reporter gene)使用。科學家只要把相關基因的啟動子(promoter)後面接上冷光素酶的基因,就可以定量該啟動子在特定狀況下的表現量。 但是,對於想要看植物在黑暗中自己熠熠發光的人們來說,冷光素酶顯然不是選擇。 後來有從維多利亞多管發光水母( Aequorea victoria )中分離出來的綠色螢光蛋白(GFP,green fluorescent protein)。綠色螢光蛋白不需要受質,但是它需要光的刺激:395 nm和475 nm分別是最大和次大的激發波長。所以,要它發光,要額外提供給它395 nm的光波。這也是為什麼,之前曾經引起一波熱潮的螢光魚,需要購買特殊的燈管。 自然界會發出冷光或螢光的,也並不只限於螢火蟲與水母。還有一大群蕈類,也會發出螢光。即將上市的螢火蟲矮牽牛,其實是植入了小皮傘科(Marasmiaceae)的 Neonothopanus nambi 的整條螢光途徑。這個基因需要咖啡酸(caffeic acid)作為受質,不過植物本來就會合成咖啡酸,所以不是什麼大問題。 2023年9月,美國農業部核准了螢火蟲矮牽牛上市。為了要通過審查,Light