跳到主要內容

小麥何時傳入英國?

小麥(Triticum sp.)應該是世界上最重要的農作物之一,也是兩種人類耕作歷史最悠久的農作物之一(另一個是大麥)。小麥大約在距今一萬到一萬一千年前,與大麥一同在肥沃月彎(Fertile Crescent)馴化。

不過,當時所馴化的小麥,並不是我們現在看到的小麥。現在被人類大量種植的小麥稱為麵包小麥(wheat,T. aestivum),總共有42條染色體。雖然麵包小麥在大約20萬年前便已經出現,但是在肥沃月彎的小麥是一粒麥(einkorn,T. urartu 或是 T. monococcum)與二粒麥(emmer,T. dicoccum)。麵包小麥的抗寒性比一粒麥、二粒麥都好,所以在接觸到麵包小麥以後,一粒麥與二粒麥便逐漸式微了。

一粒麥。圖片來源:"Triticum monococcum0".
Licensed under CC BY-SA 3.0 via Wikimedia Commons.

小麥在肥沃月彎馴化後,便隨著人類的腳步在歐洲傳播。過去的一些研究發現,小麥大約在八千五百年前傳到希臘,八千年前傳到埃及,再一千年到德國。然後,小麥終於在五、六千年前到英國。

不過,到英國的時間點一直都有些爭議。有些考古學家認為沒有那麼晚,但是有幾份證據說幾分話才是科學,所以也只能大家努力找證據罷了。

最近,英國的研究團隊在英國南部的Bouldnor Cliff的海床(位置請見下圖)上,找到了證據支持小麥傳入英國的時間大約要比原先想的往前推兩千年。

Bouldnor Cliff的位置(A)以及發掘的地點(B)。
圖片來源:Science
為什麼這個點會被選上呢?原來,過去在考古上的發現已經讓研究團隊知道,居住在這一帶的先民們,比不列顛本島(mainland Britain)上的人們,在生活技能上要先進得多;而他們的技能顯然是向歐洲的先民學習來的。後來,地球氣候變暖,冰河消融,使得海平面上昇後,這一帶漸漸變得不適合居住;於是他們就離開了家園,向著高地出發。

研究團隊先探測這一帶的海床,確認沒有被擾動以後,便開始鑽取海床沈積物的樣本(鑽取的位置見上圖C),分段檢測、分析DNA的序列。

首先研究團隊發現,在海水還沒有把這一帶淹沒之前,這裡有許多樹:包括橡樹、白楊、蘋果樹、山毛櫸(beech)等等。

另外,沈積物中還有大量的禾本科(Poaceae)植物。由序列來分析發現,這些禾本科植物並不是不列顛島上原生的種類,如賴草(Leymus)、冰草(Agropyron)等。而且,許多沈積物中的DNA序列,與麥屬(Triticum)的序列完全吻合,尤其是一粒麥!

當然,這類的古代樣本的DNA分析要非常小心污染的問題。有興趣的朋友可以去看「尼安德塔人:找尋失落的基因組」這本書,而英國的研究團隊也非常的小心,他們檢測過所有的實驗試劑,都沒有麥屬的基因污染;而且進行所有實驗的實驗室,過去也沒有分析過麥屬的植物的DNA。因此,他們確定在海床沈積物裡面發現的麥屬(尤其是一粒麥)的DNA是真的,而不是污染。

在同樣的樣本中,研究團隊還測到狗、狼、牛、鹿、松雞(grouse)與齧齒類的DNA;這些DNA也吻合中石器時代(Mesolithic)的人類的生活。

由於當地的海床在過去的檢測分析,其年代大約是八千年前左右;因此,若檢測出來的麥屬DNA的確來自於這一帶的海床沈積物,代表小麥(一粒麥)傳入英國的時間,要比原先設想的往前推兩千年左右。

在那個時空的英國先民,究竟是真的學會種小麥的技術了呢?或者,他們只是經由以物易物,從歐洲大陸取得了小麥的種子來食用?由於當地的海床沈積物似乎沒有證據可以支持農業的發生,因此也不能排除後面這種可能;當然,也有可能他們在其他較高的地區耕種。有意思的是,幾篇國外的科普文章,都不約而同的把「遠古時代的商業行為」當作標題(科學人洛杉磯時報),倒是Nature NewsScience Now相對就保守多了。

本文版權為台大科教中心所有,其他單位需經同意始可轉載。)

參考文獻:

Oliver Smith. 2015. Sedimentary DNA from a submerged site reveals wheat in the British Isles 8000 years ago. Science. 347(6225):998-1001

留言

這個網誌中的熱門文章

為什麼「種豆南山下,草盛豆苗稀」?

陶淵明在「歸園田居」詩中,曾經提到「種豆南山下,草盛豆苗稀」。這首詩大家都很熟了,也是很受歡迎的國文教材,但是,有多少人認真去想為什麼「草盛豆苗稀」呢?難道只是因為陶淵明不會種田嗎?

雖然根據歷史的記載,「歸園田居」可能真的就是在他剛隱居的時候寫的(1);而在那時候,可能他的耕種技術也的確是還有待提升;不過筆者卻認為,從生物學的角度來看,「草盛豆苗稀」也不全是耕種技術的問題。

首先,我們來看一下氣候。陶淵明隱居的地點在潯陽柴桑,也就是現在的江西省九江市星子縣。當地是北緯29.44度,在北回歸線以北,屬於濕潤型亞熱帶氣候(2),1971-2000的年平均溫度為攝氏17.03度,每年四月就不再有攝氏零度以下的低溫(3)。雖然還是比臺灣偏北(台北市是北緯25.02度),大致上還是屬於溫和的氣候,植物的種類應該也不會相差太多。即使考慮近年來全球暖化的問題,應該也不會超過攝氏一度(4)。

在亞熱帶的台灣,夏天通常並不是植物茂盛生長的時期。為什麼呢?因為世界上90%的陸生植物是C3植物,這些植物在氣溫超過攝氏30度時,會因為光呼吸作用(photorespiration)造成水分的消耗大量上昇。C3植物(如大豆)在攝氏30度時,每抓一個二氧化碳分子就要消耗833個水(5),於是植物的生長速度就開始變慢。

不過,並不是所有的植物在夏天時生長速度都會變慢唷!有些植物,如玉米、甘蔗等,反而在夏天時長得特別好。為什麼呢?

原來玉米與甘蔗是所謂的C4植物,它們既耐熱又耐旱,跟C3植物比較起來,在攝氏30度時C4植物每抓一個二氧化碳的分子只消耗277個水(5),所以夏天的時候,它們的生長速度ㄧ點都不受影響呢!
說到這裡,讀者可能會想:什麼是C4植物?為什麼它們能夠既耐熱又耐旱呢?
所謂的C3、C4植物,指得是它們在光合作用上的不同。C3植物進行光合作用時,是由卡爾文循環(Calvin cycle)的酵素(RuBisCo,如圖二)直接抓取溶解在細胞中的二氧化碳,與核酮糖1,5-二磷酸(ribulose 1,5-bisphosphate,RuBP)進行反應;


而C4植物則在卡爾文循環上面,又增加了幾個步驟,而且這幾個步驟還跟卡爾文循環在不同的組織中進行呢(如圖三)!為什麼會這樣呢?


原來,C4植物多半都生活在亞熱帶或熱帶,在這些氣候區,植物進行光合作用時,會遇到一個大問題。

這個問題來自於卡爾文循環的第…

【原來作物有故事】麵包樹 熱帶果實引發電影傳奇

第一次聽到麵包樹的名字,是在小學的校園裡。當時老師說麵包樹雖然果實真的長得像麵包,但因為台北太冷了,原生於熱帶的它沒辦法在台北開花結果。

後來在花蓮當老師時,發現學校餐廳夏天有時會出現一種特別的蔬菜湯:裡面有黃色果肉、白色種子的「菜」。在地的同事告訴我,那叫做「巴吉魯」,也就是麵包樹的果實。

花蓮的夏天總是不缺「巴吉魯」,不只市場裡有賣、有些人家的院子裡就有麵包樹。在地的朋友說,成熟的果實削皮切塊加點小魚乾煮湯很好喝,長不大的果實(雄花花序)用來燃燒驅蚊,據說比蚊香還有效。

麵包樹是桑科波羅密屬的多年生大型喬木,花為單性花,雌雄同株;果實是由30-68朵雌花所形成的多花果。麵包果通常在採收後五天到一週內食用最好吃,如果冷藏可以保存二到三週。

目前的研究認為麵包樹源自大洋洲新幾內亞、馬來半島、與西密克羅尼西亞。台灣的麵包樹原生於蘭嶼。在蘭嶼,麵包樹稱為“chipogo”,達悟族人用於製作船首、船尾板、坐墊,及住屋用的宗柱、主屋之踏腳板與木笠、木盤等用具,而分泌的乳白色汁液具黏性,可以當作粘接劑。

達悟族較少食用麵包果,倒是台灣東部的阿美族與太魯閣族經常拿麵包果來吃;不過太平洋群島上最常見的吃法應該是將麵包果放在鋪了葉片的坑洞內發酵成可以放二、三年的「果醬」。由於太平洋群島夏季常有颱風,這些「果醬」對各地原住民們是颱風後很重要的緊急糧食。既然麵包樹這麼重要,「南島語族」(包括台灣的原住民)不論坐船到哪裡,總是帶著麵包樹的種子。所以,麵包樹在太平洋各群島上是常見的風景。

第一個看到麵包樹的歐洲人應該是十六世紀末到十七世紀初的葡萄牙航海家佩得羅‧費爾南德斯‧德‧基羅斯。比他晚將近一百年的英國航海家威廉‧丹皮爾船長,他提到麵包樹的果實可以烤來吃。

到了十八世紀,麵包樹突然搖身一變成了「神奇糧食」。到底發生了什麼事呢?原來在1769年與庫克船長乘「奮進號」的英國植物學家班克斯爵士在大溪地看到了麵包樹,因為麵包樹的果實約有四分之一為澱粉、在熱帶地區又長得很好,使班克斯認為麵包樹可能是解決英國在牙買加殖民地奴隸營養問題的解答。於是在1787年,英國皇家科學院派遣邦迪號前往大溪地收集麵包樹帶到加勒比海群島種植。為了這個目的,船上還有一位隨船的植物學家大衛‧尼爾森。

原訂於8月16日出發的邦迪號,因為一連串的延遲,最後終於到了大溪地、收集了足夠數量的麵包樹以後,卻在因為船長布萊一路…

通風報信的植物

植物受傷時會有什麼反應?過去的研究讓我們瞭解,當植物被攻擊(受到病原菌感染、受傷)時,會釋放出揮發性有機物質(VOCs,Volatile Organic Compounds),讓自己以及附近的植物啟動防禦機制。這個作用有點像古代的烽火臺,當敵人來襲就燒起狼煙,附近的人看到狼煙就知道這裡出事了,要加強戒備。

不過,當附近的植物感應到VOCs時,它們會如何加強自己的防禦機制呢?過去的實驗發現,當植物的地上部位受到病原菌感染時,會傳遞信號給自己的根,接著根部的鋁活化蘋果酸運輸蛋白(ALMT1,aluminum-activated malate transporter)便會活化後釋放蘋果酸(malate)到土壤中來召喚枯草桿菌 UD1022(Bacillus subtilis UD1022)這隻植物的益菌。這些現象是否不僅僅發生在苦主、也發生在附近的植物身上呢?

康納(Connor Sweeney)和他在德拉瓦大學的指導教授,最近發現:不只是受傷的植物本身會進行這些防禦機制、附近的植物也會呢!

康納是德拉瓦州(Delaware)的高中生。他因為對科學有興趣,寫了e-mail給德拉瓦大學(University of Delaware)的白斯教授(Harsh Bais),表達希望能進他的實驗室學習。當白斯老師回信說「OK」的時候,康納高興得不得了。

於是他就開始了他的實驗室生活:下課後、週末以及暑假,康納都在白斯老師的實驗室裡種阿拉伯芥(Arabidopsis thaliana)。雖然他也是高中的游泳校隊,但他盡可能地投入時間作實驗。

成果是豐碩的。兩年後,康納在白斯教授的指導下,解出了植物接到鄰居的「狼煙」以後,接下來做了什麼;他們的成果發表在2017年的「植物科學前鋒」(Frontier in Plant Science)期刊上。

以一個高中生來說,這可是個非同小可的成就;康納不只是付出了許多努力,他也細心觀察每一個實驗。因為他夠細心,所以才沒有錯失了重要的發現。

這個重要的發現是什麼呢?有一天他如常地進行實驗:把一株阿拉伯芥用鑷子弄了幾個傷口,準備明天觀察它的反應。不同的是,這次旁邊有一株阿拉伯芥沒有被他弄傷。

第二天他看到了令他不敢相信的結果:旁邊的阿拉伯芥的主根變長、而且還長出了不少側根。

於是他們做了更多測試。他們發現:旁邊有受傷的伙伴的小芥們,主根生長的速度大約…