跳到主要內容

番茄(tomato)如何回應隱形的夥伴與敵人

 

番茄天蛾。圖片來源:維基百科

面對環境變化,植物總要努力因應。我們過去知道,植物在被昆蟲啃咬的時候會釋放揮發性化合物(VOC),但是,最近的一個研究卻有不太一樣的結果。

他們使用了四種不同的番茄(Solanum lycopersicum L.)品系進行實驗,分別是:

1. Mountain Fresh F1 (MF): 這是一個具有強大適應性的品系,能夠在涼爽和潮濕的環境中生長。它能生產大型、重達8-16盎司的果實,味道良好,並且對多種病害有很強的抵抗力。由北卡羅來納州立大學的Dr. Randy Gardner開發。

2. Valley Girl F1 (VG): 資料較少,可能也是針對特定生長條件進行優化的雜交品系。

3. Amish Paste OG (AP): 這是一個擁有超過100年歷史的傳統品系。它是不定性品系,意味著它會持續生產番茄直到霜凍來臨。Amish Paste番茄生產大型的果實,具有獨特的甜和酸的風味。

4. Cherokee Purple OG (CP): Cherokee Purple是一個古老的番茄品系,果實在成熟時呈深色,表皮近蒂部保持一定的綠色。這種番茄因其深紅色的內部和清晰的表皮組合而呈現出獨特的顏色。

實驗中使用的昆蟲是「番茄天蛾」(Manduca sexta),這是一種常見的害蟲,主要在夜間活動,會對番茄、煙草等植物造成損害。

四種番茄品系,每個進行了四種處理,每種處理有八次重複,總共128個盆栽。每個品系的一半接種了叢枝菌根真菌(AMF),另一半在收集揮發物前48小時暴露於昆蟲取食。處理組(每種處理8個)如下:1) 無AMF + 無取食,2) 無AMF + 取食,3) AMF + 無取食,以及4) AMF + 取食。所有植物都在伊利諾伊大學厄巴納-香檳分校(UIUC)植物護理設施(PCF)的溫室中生長,在25°C ± 5°C、50 ± 5%相對濕度和14L:10D光照周期下養育三周。

這個研究使用了市面上可購得的叢枝菌根真菌MycoApply® Ultrafine Endo/Ecto接種劑,由Mycorrhizal Applications公司(位於美國俄勒岡州格蘭特帕斯)生產,並由A.M. Leonard Horticultural Tool & Supply Co.(位於美國俄亥俄州皮奎)購得。該接種劑包含四種AMF菌根真菌:內生根圈霉(Glomus intraradices)、摩西根圈霉(Glomus mosseae)、聚合根圈霉(Glomus aggregatum)、以及埃圖尼根圈霉(Glomus etunicatum)。

研究團隊想要探討在不同的番茄品種中,菌根真菌共生和番茄天蛾取食對植物揮發性有機化合物(VOCs)排放的影響,以及這些因素如何影響植物的生長特性。這些發現對於理解植物與其生態環境之間的相互作用以及在農業生產中的應用具有重要意義。

實驗結果顯示:

1. VOCs排放:研究發現,無論是菌根真菌的共生還是番茄天蛾的取食,都會導致番茄植物的揮發性有機化合物(VOCs)排放量降低。這一發現與通常植物對生物壓力反應增加VOCs排放的預期相反。

2. 菌根真菌的共生效應: 菌根真菌的共生能夠促進植物生物量的增加,顯示出共生關係對植物生長的正面影響。這可能是因為菌根真菌改善了植物的營養吸收效率或者激活了某些植物防禦機制。

3. 品系間的差異:不同的番茄品系在VOCs排放量上展現出顯著差異,顯示品系特有的遺傳特徵可能影響植物對環境壓力的反應。

總共檢測出21種VOCs,在這些VOCs中,β-橙花烯、β-蒎烯、(+)-4-蒈烯、α-蒎烯、β-萜烯、葉烯、γ-萜烯、p-樟腦和十五烷對於區分雜交品系和傳統品系有最顯著的貢獻。總VOC排放量(即所有21種檢測出的化合物的總和)因番茄品系、菌根真菌的共生和昆蟲取食而變化,所有測試的番茄品系總VOC排放量均因菌根真菌的共生和昆蟲取食而降低。

在無AMF無取食的情況下(no AMF no herbivory),雜交番茄比傳統品系排放更少的烷烴1-十五烷。無論是在對照處理(無AMF無取食)還是在組合處理(+AMF +取食)中,雜交品系都排放了倍半萜類的蒲葵烯,而傳統品系則沒有排放蒲葵烯。在組合處理(+AMF +取食)中,雜交番茄還顯示出更少(只有兩種)的烷烴(新異龍血脂8,9-脫氫-和十五烷),而傳統品系則排放了所有三種烷烴(1-十五烷,新異龍血脂8,9-脫氫-和十五烷)。

此外,非度量多維縮放(NMDS)分析的二維圖表顯示,僅有番茄品系顯示出強烈的分離效應,傳統品系與雜交品系呈現出不同的聚類,展現出品系對總VOC組成的顯著影響 。

這些結果強調了植物、菌根真菌和昆蟲之間複雜的生態互動,以及這些互動如何影響植物的化學通訊和生長特性。進一步的研究可以提供對這些互動機制更深入的了解,並為改進農業提供科學依據。

參考文獻:

Dady, E.R., Kleczewski, N., Ugarte, C.M. et al. Plant Variety, Mycorrhization, and Herbivory Influence Induced Volatile Emissions and Plant Growth Characteristics in Tomato. J Chem Ecol 49, 710–724 (2023). https://doi.org/10.1007/s10886-023-01455-w

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N