跳到主要內容

鐵(Fe)與銠(Ru):催化劑的科學與氨合成的未來

1913年的製氨反應器。
圖片來源:維基百科

 

哈伯法(Haber process)是由哈伯(Fritz Haber)與他的助理Robert Le Rossignol在1905年發明的。他們使用鐵(Fe)作為催化劑,在高溫高壓下合成了氨(NH3)。當時這個發現有許多重大意義,過去一直以為如氨這樣的化合物只有「有生命」的物種才能合成它,所以能在實驗室製造氨真的是「轟動武林、驚動萬教」的事,而另外一個重大的意義則是從此我們有源源不絕的氮源,可以用來製造肥料,不需要依賴天然氮源如鳥糞等。

不過,哈伯只是在實驗室取得成功,要工業化生產,需要進一步改善合成的方法。哈伯法後來被巴斯夫(BASF SE)買下專利,並委託博施(Carl Bosch)做進一步改善。所以後來哈伯法也常被稱為「哈伯-博施法」(Haber-Bosch Process)。

因為高溫高壓非常消耗能源,所以後來還是不斷地有科學家試圖改善哈伯法。這裡提供一點大家可能都不會注意到的事實:哈伯法每年大約消耗全球能源生產的1-2%,並使用了全球3-5%的天然氣。此外,它還產生了全球1-3%的二氧化碳排放。

其中取得成功的是以銠(元素符號Ru)為催化劑的製程。以銠作為催化劑,能允許反應在更溫和的壓力和溫度條件下運作,因此被視為第二代催化劑。銠基催化劑的活性強烈依賴於載體和促進劑。自1992年以來,銠活化碳基催化劑在KBR高級氨製程(KAAP)中已被工業使用。儘管有一些缺點,例如載體被氫氣轉化為甲烷的風險,但透過對碳載體進行特殊處理可以減緩這一問題,從而延長催化劑壽命。

但是,到底鐵與銠誰比較好?還是各自有長處?最近的一個研究,提供我們一些觀點。

研究團隊利用操作型X射線光電子能譜(XPS)來確定在氨(NH3)生產過程中,鐵和銠催化劑的表面組成狀態。研究團隊發現,無論是平坦或階梯狀的鐵表面,以及銠單晶表面在高達1巴的壓力和723K的溫度下,都保持金屬態,但銠的表面幾乎無吸附物,而鐵催化劑則保留少量吸附的氮並在較低溫度下在階梯狀表面形成高覆蓋率的氨基(NHx)。這些觀察表明,在銠催化劑上,速率限制步驟始終是N2的解離;相比之下,在Fe催化劑上,隨著溫度降低,限速步驟從N2解離轉變為表面物種的氫化。

另外,研究團隊發現,銠催化劑在623K時達到最高活性,這與催化反應器研究一致。相比之下,鐵催化劑要到更高的溫度(723K)表現出較高的活性。

還有,在523K下,鐵和銠催化劑的表面化學發生了一些特別的現象。尤其在鐵催化劑上,低於523K的溫度時沒有觀察到氮化物(nitride)的形成。這顯示出在不同溫度下,這些催化劑的表面反應和氨的產量會有所不同,反映出溫度對氨合成過程的重要影響。

雖然銠催化劑在623K達到最大活性確實顯示它在某些條件下是一個較好的催化劑,因為不需要消耗更多能源把溫度提到更高,這樣可以節省成本。然而,判斷一種催化劑是否「更好」需要考慮許多因素,包括反應速率、能源效率、壽命、成本以及環境影響等。銠在特定條件下的高活性顯示它在這些條件下可能是一個更優選擇,但這不一定意味著它在所有情況下都是最佳催化劑。在不同的工業應用和操作條件下,可能會選擇不同的催化劑。總而言之,這項研究為理解哈伯-博施法提供了新的資訊。

參考文獻:

Green ammonia synthesis. Nat. Synth 2, 581–582 (2023). https://doi.org/10.1038/s44160-023-00362-y Goodwin, C.M., Lömker, P., Degerman, D. et al. Operando probing of the surface chemistry during the Haber–Bosch process. Nature 625, 282–286 (2024). https://doi.org/10.1038/s41586-023-06844-5

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N