跳到主要內容

從種子看起:探索馴化如何重塑植物與微生物的共生關係

 

菜豆。圖片來源:維基百科

我們都知道,不論動植物都有「微生物體」(microbiome):它們與我們一起生活、保護我們、合成維生素給我們,我們也提供它們它們生活需要的養分。

近年來的研究發現,住在一起的人的微生物體會比較像。那麼,跟我們在一起、被我們馴化的植物,它們的微生物體會不會有什麼改變?

為了回答這個問題,研究團隊選擇研究馴化對植物微生物群落的影響,他們想探討植物馴化是否對植物微生物體的組成產生了變化。他們認為這些變化可能獨立於具體的馴化事件,並且可能與馴化過程中選擇的植物特徵有關。這項研究的目的不是找到植物表現型和微生物成員之間的因果關係,而是找到獨立的馴化效應對植物微生物體的影響證據。

研究團隊特別關注鈣和鎂的含量,因為這兩種元素對細菌孢子的形成、細菌膜和細胞壁的完整性以及抗菌性都很重要。此外,這兩種陽離子在種子中的微生物生存中有重要的作用,特別是在調節滲透壓方面。

為了證明馴化如何影響植物微生物群落的組成,研究團隊進行了一系列實驗。他們針對在哥倫比亞國際農業研究中心 (CGIAR-CIAT)戶外種植的菜豆(Phaseolus vulgaris)的不同亞群體進行了種子微生物群落的採樣和分析。研究共分析了70種不同基因型植物的種子微生物群落。

研究結果顯示,獨立的馴化事件導致了在不同地理位置獨立馴化的植物群落中類似的種子細菌群落特徵,這些特徵部分可以用選擇共同馴化植物表現型來解釋。此外,這些發現為了解植物馴化對植物微生物群落的影響提供了途徑,並可能應用於農業微生物應用中,以改善植物健康和生產力。

研究團隊發現,在菜豆與皇帝豆(P. lunatus)中進行的多個獨立馴化事件中,植物馴化對種子微生物群落組成和豐度有一致的影響。

種子細菌群落的變化與在馴化過程中選擇的植物特徵有關,如鈣(Ca)和鎂(Mg)濃度的變化。

他們發現,馴化過程引入的微生物群落特徵主要包括屬於變形菌門(Proteobacteria)、厚壁菌門(Firmicutes)和擬桿菌門(Bacteroidota)的成員。

馴化導致的細菌群落組成和豐度的變化在功能層面上有所反映,表現在細菌代謝途徑的相對豐度變化上。

研究團隊進一步採用了多種統計模型和分類方法來分析數據。他們發現,根據AIC標準,最佳模型是那些考慮了鈣濃度變化的模型,這超過了考慮生物狀態(野生或馴化)的模型。研究顯示,植物馴化顯著降低了種子中的鈣濃度,這減少了植物的表現型變異性。此外,大多數變形菌門的菌種對鈣濃度的增加有負面影響。高斯共軛模型也證實,鈣濃度的變化比生物狀態更能解釋微生物群落成員間的共生模式。

所以研究團隊得到結論:馴化對種子微生物群落的影響是一致的,並且這種影響與馴化選擇的特定植物特徵有關,而不僅僅是馴化事件本身。

透過這項研究,研究團隊希望能更好地預測並嘗試改變馴化植物微生物群落的組成,以改善植物健康和生產力。他們專注於種子這一植物器官,因為種子直接受到了重要農業特徵的選擇影響。然而,他們也指出種子只是被馴化改變的一個部分,未來的研究需要全面評估植物馴化效應是否取決於植物部分,以及種子細菌群落的變化是主要與種子表現型相關,還是也與其他部分的表現型變化相關,這些部分是微生物通過其傳播到種子 。

參考文獻:

Soldan et al., Consistent effects of independent domestication events on the plant microbiota, Current Biology (2024), https://doi.org/10.1016/j.cub.2023.12.056

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N