跳到主要內容

你不知道的長壽花(Kalanchoë blossfeldiana)

 

長壽花。圖片來源:維基百科

長壽花(Kalanchoë blossfeldiana)大家一定很熟悉,過年前後在花市很容易看到它們。小時候看到的是單瓣,近幾年來也有重瓣長壽花問世,蠻受歡迎。不過,長壽花其實是原產於馬達加斯加,最早有紀錄的文獻出現於1934年。它的屬名「Kalanchoë」是來自於「伽藍菜 gāláncài」。

這麼普通的植物,卻有一個神奇的技能:它可以同時進行C3與CAM代謝。有些植物可以在C3與CAM代謝之間轉換(如冰花Mesembryanthemum crystallinum),但是要同時進行兩種代謝形式,我倒是沒聽過。

過去的研究發現,長壽花的成熟葉可以進行CAM代謝,嫩葉則只進行C3代謝。既然說成熟葉「可以」進行CAM代謝,意味著它也不必然一定會。

什麼因素可以讓它的成熟葉進行CAM代謝呢?最近的研究發現總共有三個因素:乾旱、離層酸(ABA)、葉片老化。

研究團隊發現,隨著葉片老化,CAM基因的表現量也跟著上升。研究團隊發現,當長壽花長出第9對葉片時,從底部數起的第3對葉片開始出顯顯著的CAM基因表現。研究團隊觀察到核心CAM基因表現(如PEPC和PPCK)的顯著增加。

PEPC是磷酸烯醇丙酮酸(PEP)羧化酶(PEP carboxylase),負責將重碳酸根加到磷酸烯醇丙酮酸上,是C4與CAM植物固碳的第一個步驟;而PPCK負責磷酸化PEPC,使PEPC活性上升,可以抓更多的碳。

除了老化之外,乾旱以及外加的離層酸,都可以讓長壽花的CAM基因表現量上升;另外,研究團隊還發現,短日照和氮素缺乏也可以誘導長壽花表現 CAM 相關基因。

透過一種新的定序分析方法,研究團隊發現長壽花的嫩葉與成熟葉在黃昏時的基因表現差異相當大,主要是與CAM代謝相關的基因出現不同。他們發現,成熟葉片共有685個基因在黃昏時表現量上升,而另外的1491個基因表現量下降。這些表現量上升的基因,許多都與CAM代謝有關。這些表現量上升的基因,也包括了澱粉分解途徑的基因,意味著CAM植物的確在夜間會分解澱粉。

而在黃昏時表現量下降的1491個基因,包括了與光合作用的光反應、電子傳遞鏈、醣解作用、檸檬酸循環、壓力反應與信息傳導等基因,顯示植物在晚上因為光線狀況變化所產生的因應措施。植物降低這些方面的活動,但是提升與CAM代謝途徑相關的活動,讓固碳的效率提高。

透過研究長壽花,我們對CAM代謝有進一步的了解;另外,研究團隊使用了新的定序分析法,透過使用Nanopore快速定序與Illumina NovaSeq 6000短讀定序,導入MaSuRCA來進行混合組裝,並使用Ragtag以及「蝴蝶之舞」(Kalanchoë laxiflora )的基因體做為參考,他們成功的將定序分析的費用降到4500美元。一般要定序分析一個生物的基因體所需的經費大約在5000到50000之間,所以這個方法可以幫助科學家更經濟也更準確地進行基因體的研究。

參考文獻:

Cowan-Turner, D., Morris, B. A., Sandéhn, A., Bernacka-Wojcik, I., Stavrinidou, E., Powell, R. F., Leitch, I. J., Taylor, J., Walker, M., Nwokeocha, O., Kapralov, M. V., & Borland, A. M. (2024). Sequencing complex plants on a budget: The development of Kalanchoë blossfeldiana as a C3, CAM comparative tool. Plants, People, Planet, 1–15. https://doi.org/10.1002/ppp3.10517

留言

這個網誌中的熱門文章

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

植物界的變色龍Boquila trifoliolata如何模仿?

  圖片來源: 維基百科 信不信植物界也有變色龍?原產於南美洲智利中、南部與阿根廷的藤本植物 Boquila trifoliolata 在攀爬到其他樹上時,葉片的形狀會從原本的長鈍橢圓形三出複葉改變為宿主植物的形狀;甚至當它從一種植物攀爬到另一種植物時,葉片的型態也會跟著改變。 過去的研究發現, Boquila trifoliolata 之所以做這樣的改變,可能是因為 可以讓它避免被吃 。但是到底「變色龍藤」是怎麼「看」到它攀爬上去的植物長什麼樣子呢? 最近發表在Scientific Report上的研究發現,「變色龍藤」可能是從「宿主」的菌群(microbiota)得到資料。研究團隊收集了「變色龍藤」模仿「宿主」的葉片上的菌群(BR)、沒有模仿「宿主」的葉片上的菌群(BT),以及「宿主」的菌群(RS)。結果發現,沒有模仿「宿主」的葉片上的菌群(BT)與「宿主」的菌群(RS)之間只有共享了79個獨特的OTU(操作分類單元,可能代表細菌的屬或種),但模仿「宿主」的葉片上的菌群(BR)與「宿主」的菌群(RS)之間卻共享了255個獨特的OTU!更有趣的是,沒有模仿「宿主」的葉片上的菌群(BT)與模仿「宿主」的葉片上的菌群(BR)間也只共享了33個OTU。 這個結果顯示了,「變色龍藤」能模仿「宿主」的型態,與它們之間共享的菌群高度相關。但是究竟「變色龍藤」是如何從這些菌群得到資料?這就有待進一步的研究了。 參考文獻: Gianoli, E., González-Teuber, M., Vilo, C. et al. Endophytic bacterial communities are associated with leaf mimicry in the vine Boquila trifoliolata. Sci Rep 11, 22673 (2021). https://doi.org/10.1038/s41598-021-02229-8

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。