跳到主要內容

自然界的微型感應器:光體(photobodies)

 

圖片來源:Nature Communications

植物需要光,所以所有的植物(除了寄生植物以外)都有「光受器」(photoreceptor)負責做這件事。而且,因為光對於植物非常重要,植物絕對不會只有「一個」光受器。每一種植物都有好幾個光受器,負責看光的顏色、方向、強度。

在高等植物如阿拉伯芥(Arabidopsis thaliana),負責看對於光合作用最重要的紅光的光受器是光敏素(phytochrome)。阿拉伯芥總共有五個光敏素,分別依照英文字母順序命名。

其中最主要的光敏素是光敏素A與光敏素B。而光敏素B尤其重要,因為光敏素B負責看植物在一般狀況下的光,所以對植物生長發育的影響極大。

過去的研究已經發現光敏素B不只會感光還會感熱。在20世紀末時,沙克研究所的研究團隊注意到,光照會讓植物的細胞核內出現一些被稱為「光體」(photobodies)的構造。

後續的研究發現,光體裡面最重要的成員是光敏素B,另外還有「光敏素互動因子」(PIFs,phytochrome interacting factors)以及其他的蛋白質。光體沒有細胞膜,只在照光以後會出現。

為什麼會形成光體呢?雖然有些科學家覺得這只是隨機產生的「東西」,但也有些科學家不認同這個看法。就像人不會完全沒有理由就聚集成群一樣,對於植物這種自營生物來說,每個動作應該都是有理由的。

為了研究光體,加大河濱分校的研究團隊發明了一種稱為Oligopaints的螢光原位雜交(FISH)技術來標記個別光體。透過這個技術,他們得以用基因序列來標記個別光體。

研究團隊發現,這些在顯微鏡下看起來像「斑點」(speckle)的光體,其實有12種!這些光體根據它們是否與染色中心相關,以及它們是否位於核仁周邊,可被分為兩類:

核仁相關光體(Nuo-PBs):這類光體位於核仁周邊,並且可以進一步劃分為與特定染色中心相關的幾種光體,例如Nuo-CC2-PB, Nuo-CC3-PB, Nuo-CC4-PB等。 非核仁相關光體(nonNuo-PBs):這類光體位於核仁以外的位置,同樣可以劃分為多種,如nonNuo-CC1-PB, nonNuo-CC2-PB等。

另外,他們也發現,可以透過光照或溫度來調節光體的大小以及出沒。例如,在強紅光(R light)下,活化態的光敏素B(Pfr)含量增加,這會導致少數幾個較大的光體形成。這是因為高濃度的光敏素B有助於推動更大範圍的液-液相分離(LLPS),形成較大的光體。而低溫會讓光敏素B的活化態變得穩定,這同樣可以促進較大光體的形成。當溫度升高時,光體的類別就減少了,從九種(16度C)減少到五種(27度C)。

光體在較高溫度下數目減少的原因,有可能是光體們彼此合併、也有可能是有些種類的光體消失了。為了證光體減少是因為消失而不是合併。研究團隊進行了一系列實驗。

首先,他們觀察了不同溫度(16°C和27°C)下光體的變化,特別是那些在低溫時常見但在高溫時減少的光體類型。如果光體是因為合併而減少,那麼在高溫下應該會觀察到較少但更大的光體。然而,研究團隊發現,特定溫度敏感的光體在高溫下實際上是消失了,而不是合併成更大的光體。

此外,進一步的分析顯示,即使在只剩下一個光體的細胞中,這個剩餘的光體也可能是非核中心相關的光體(nC-PBs),它們通常比較小且分散。這意味著在較高的溫度下,光體的減少是因為特定光體的消失,而非光體之間的合併。

所以,溫度對光體數目影響的機制是透過讓特定的溫度敏感光體消失來實現的,而不是因為合併。這些發現有助於更好地理解植物如何透過光體調節其對溫度變化的反應,研究團隊認為光體在較高溫度下的消失現象可能與光敏素B有關,畢竟之前的研究已經發現,光敏素B是可以感應溫度的。

簡而言之,這個研究不僅發現了植物內部如何精細調控這些光體,也幫助我們理解植物如何利用這些結構來適應不斷變化的環境。期待未來光體的研究能讓我們對植物如何感光與感熱有更多的理解!

參考文獻:

Du, J., Kim, K. & Chen, M. Distinguishing individual photobodies using Oligopaints reveals thermo-sensitive and -insensitive phytochrome B condensation at distinct subnuclear locations. Nat Commun 15, 3620 (2024). https://doi.org/10.1038/s41467-024-47789-1

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N