跳到主要內容

獨腳金(Striga)與ABA的雙人舞

 

圖片來源:The Plant Journal

獨腳金(Striga)廣泛地分布在澳、非、亞洲,據說在台灣也看得到。

在非洲,獨腳金造成很大的農損,它是寄生植物,種子躲在土裡,等寄主植物要發芽的時候,它就快快發芽,開始大吸特吸寄主植物的養分。

之前曾經報導過它如何偵測寄主植物發芽,最近有一個研究發現,除了strigolactone,ABA(離層酸)對它也很重要。

過去研究ABA對獨腳金的影響的人並不多,但既然ABA對一般植物的種子發芽很重要,好像沒道理對獨腳金沒有影響。畢竟,要當一個出色的寄生蟲,就要能夠廣泛採用寄主的資源不是嗎?

一開始,研究團隊先確認ABA對獨腳金會有什麼影響。一般來說,在獨腳金種子落地後,它就會進入休眠,等到濕度與溫度都適合,才會發芽。從遇到適合的環境到真的發芽,通常都還需要個幾天,這個過渡期被稱為「調理」(conditioned)期。

研究團隊發現,非調理的獨腳金種子如果使用100 μm氟啶酮(Fluridone)與1.0 μm的rac-GR24(一種瑟吉醇類模擬物)一起處理,大部分( 70% )的種子都會發芽;但如果同時也加入 ABA (100  μm),則發芽率降到1%,所以ABA的確會抑制獨腳金種子發芽。

接著,研究團隊測量不同處理的種子,他們發現以氟啶酮(Fluridone)與rac-GR24處理的種子,裡面的ABA含量下降。另外,與分解ABA有關的酵素,在獨腳金種子泡水後表現量上升,進一步證明了ABA的確與獨腳金種子發芽相關。

接著研究團隊發現,隨著獨腳金種子條件化的進展,對ABA的敏感度降低。他們將獨腳金種子在水中調理2天或8天,然後分別用不同濃度的ABA(1.5、3、6、12、25、50和100μM)處理24小時。結果顯示,經過2天調理的獨腳金種子對ABA有明顯的發芽抑制反應,而8天條件化的種子則表現出顯著較低的ABA敏感性。具體而言,當ABA濃度達到100μM時,調理2天的種子發芽率減少到約66%,但調理8天的種子發芽率僅降低了22%。這意味著隨著調理時間的延長,獨腳金種子對ABA的敏感度下降,這可能是種子為了適應環境和提高對宿主激素反應的能力而進行的生理調節。

更有趣的是,研究團隊發現,在種子的調理過程的早期階段,獨腳金種子會釋放ABA,而在經過一定調理時間(如8天)後,這些種子在受到strigolactones(SLs)刺激發芽時,會再次累積並釋放高量的內源性ABA。這意味著,獨腳金種子能夠在發芽過程中獨立合成ABA,抑制寄主植物發芽(獨腳金:你等等,等我長好準備吸你的血!)。

此外,種子發芽後釋放的ABA不僅能夠延遲周圍獨腳金種子的調理和發芽,還能促進寄主植物根系向已發芽的獨腳金種子生長,在獨腳金種子之間以及獨腳金種子與寄主植物之間的通信中,作為一種根際信號。這一發現指出ABA在獨腳金種子休眠、發芽過程中以及與寄主植物早期互動中,扮演著關鍵的角色。

所以,雖然獨腳金自己的發芽會被ABA抑制,但是它卻懂得善用這個分子,反過來用來抑制寄主植物發芽。只能說,完美的寄主植物真的有如姑蘇慕容,非常懂得「以彼之道,還施彼身」啊!

參考文獻:

Jamil, M., Alagoz, Y., Wang, J.Y., Chen, G.-T.E., Berqdar, L., Kharbatia, N.M., Moreno, J.C., Kuijer, H.N.J. and Al-Babili, S. (2024), Abscisic acid inhibits germination of 獨腳金 seeds and is released by them likely as a rhizospheric signal supporting host infestation. Plant J, 117: 1305-1316. https://doi.org/10.1111/tpj.16610

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

光合作用的循環電子傳遞(cyclic electron flow)的調節

  圖片來源:維基百科 光合作用(photosynthesis)分為光反應(light reaction)與碳反應(Calvin-Benson cycle)。其中光反應為將陽光的光能轉換為化學能(ATP)與電子(NADPH)的過程。光能由光系統I或光系統II接收並轉換為電子進行傳遞,傳遞的過程中部分的能量被細胞色素b6f複合體(cytochrome b6f complex)擷取,提供植物將氫離子(H + ,proton)由葉綠體的基質(stroma)運輸到類囊體腔(thylakoid lumen)中,製造氫離子梯度(proton gradient),以提供ATP合成酶(ATP synthase)用來合成ATP;電子本身最後被傳送給NADP,產生NADPH用來在碳反應中做為還原電子使用。 上述的過程(稱為線性電子傳遞linear electron flow)並非光反應唯一會進行的反應。除了線性電子傳遞,植物也會進行所謂的循環電子傳遞(cyclic electron flow):電子在由光系統II→細胞色素b6f複合體 →光系統I之後,不將電子運送給Fd-NADP + 還原酶來產生NADPH,而是將電子送給一個Fd-PQ還原酶。由於接著Fd-PQ還原酶會把電子交還給細胞色素b6f複合體,所以被稱為循環電子傳遞。 循環電子傳遞到底有什麼樣的功能,目前還沒有定論。有些科學家認為植物用它來調節能量(ATP)與電子(NADPH)的產生比率,也有些科學家認為循環電子傳遞有保護植物免於被過量光能傷害的功能。不管怎麼說,近年來的研究卻發現了幾個基因與循環電子傳遞的調節有關。 第一個被發現的基因是 PGR5 (PGR=protein gradient)。缺少 PGR5 的阿拉伯芥無法形成氫離子梯度,也就是說 PGR5 為光反應所必須。但是 PGR5 長得一點都不像電子運輸蛋白,這就引起了科學家們的興趣。 後續的研究發現了另一個基因稱為 PGRL1 (PGR5-like 1)。研究團隊發現,缺少 PGRL1 會造成 PGR5 不穩定,但缺少 PGR5 並不會影響 PGRL1 的穩定性。 最近又發現了另一個基因 PGRL2 。研究團隊發現,缺少 PGRL2 對光合作用沒有影響,但是在植物中過量表現 PGRL2 會使 PGR5 的穩定性下降。同時缺少 PGRL2 與 PGRL1 的植...