跳到主要內容

在月球種植物-如何提升土壤的磷(P)含量

 

圖片來源:ChatGPT

之前曾經跟大家分享過,佛羅里達大學的團隊成功地用月球土壤種植阿拉伯芥Arabidopsis thaliana)。不過,當時他們也觀察到,這些阿拉伯芥在長大後,出現了壓力反應。

我們想要在太空種植物,當然希望它們長得好。所以,接下來當然就是想辦法找出長不好的原因囉。

植物長不好,通常都是養分不夠。而植物最重要的養分,不外乎就是氮(N)、磷(P)、鉀(K)。

雖然「施肥」可能也是一個解方,但是一想到要萬里迢迢地運肥料過去,或許想其他的辦法會更好吧...例如,如果月球土壤中本來就有這些礦物質,只是缺乏對的微生物來溶解它,那麼,提供對的微生物不就行了?只要微生物能持續生長,就可以不用擔心養分不夠了。

最近的一項研究,就是要解決「磷」不足的問題。

在這個研究裡,研究團隊使用了由火山熔岩製成的月球土壤模擬物。它與月球土壤在礦物學特性、物理化學性質和水文特性上都非常相似。

研究團隊選擇了五種磷酸鹽溶解細菌(PSBs),這些細菌能夠將不可溶的無機磷轉化為可溶的形式。它們是:

Bacillus megaterium - 大芽孢桿菌
Bacillus subtilis - 枯草桿菌
Pseudomonas fluorescens - 綠膿桿菌
Bacillus licheniformis - 地衣芽孢桿菌
Bacillus mucilaginosus - 黏液芽孢桿菌

這些細菌在農業和環境科學中常見,廣泛應用於肥料和土壤改良。

研究中,研究團隊先對這五種磷酸鹽溶解細菌的磷酸鹽溶解能力進行了測試。實驗結果顯示,在七天的培養後,培養基中的Ca3(PO4)2被分解,液體培養基中可溶無機磷的濃度相比於培養前顯著增加了212.7%至519.7%(p值小於或等於0.001,每種PSB各6次重複)。這些結果顯示,這五種細菌都有很強的潛力來分解Ca3(PO4)2中的無機磷元素。但是,黏液芽孢桿菌、大芽孢桿菌 和 綠膿桿菌 表現出較強的磷酸鹽溶解能力,這可能是因為它們能夠分泌胞外黏性物質(如胞外多醣)來形成生物膜。這使得這些細菌能夠通過生物吸附與礦物顆粒緊密結合,形成穩定的細菌-礦物複合體。在這種穩定的胞外微環境中,細菌可以更有效地通過前述機制(包括質子和有機酸)分解和溶解礦物顆粒中的磷酸鹽。因此,在後續的研究中,研究團隊使用了這三種細菌來做研究。

選定的三種細菌在30°C下培養過夜。然後,將這些細菌的濃度調整到大約1 × 108CFU,並將這三種細菌的培養液以1:1:1的體積比混合,以製備接種溶液。

接著,將20克的消毒過的月球表面土壤模擬物,加入0.1毫升混合接種溶液和1毫升培養基。再加入消毒過的去離子水,以達到20%的水比率。接種液和培養基在加入土壤模擬物之前被充分混合。

之後,月球土壤模擬物被放入直徑5毫米、深17.5毫米的培養盤中,並用消毒水濕潤,保持表面有一層非常薄的水層。然後將消毒過的菸草(Nicotiana benthamiana)種子播種6-7粒到每個井中。覆蓋培養盤並在培養箱內促進發芽。生長條件為24°C,相對濕度70%,光強度130微摩/(平方米·秒),光周期16/8小時。在播種後的第6天進行人工疏苗,每個井保留2-4株植物,以避免主觀標準對實驗結果的影響。

結果顯示,經過細菌處理的月球土壤模擬物,其可用磷含量有所提高,進而促進了菸草的生長。這項研究顯示,通過使用特定的微生物處理土壤,我們可以改善月球土壤模擬物的肥力,使其成為支持高等植物生長的良好栽培基質。這一發現為在月球基地上進行植物栽培提供了技術基礎,有助於未來長期的太空探索和居住。

參考文獻:

Xia, Y., Yuan, Y., Li, C. et al. Phosphorus-solubilizing bacteria improve the growth of Nicotiana benthamiana on lunar regolith simulant by dissociating insoluble inorganic phosphorus. Commun Biol 6, 1039 (2023). https://doi.org/10.1038/s42003-023-05391-z

留言

這個網誌中的熱門文章

怎麼辦到的?變形藤(Boquila trifoliolata)模仿塑膠植物

  左:原來的葉片。右:模仿的葉片。圖片來源: 期刊 之前我們提到過一種奇妙的植物「變形藤」( Boquila trifoliolata ),它原產於南美洲智利中、南部與阿根廷。在2014年就被發現它 為了減少自己被吃 ,發展出奇妙的變形能力:爬到誰身上就長得像誰。 後來在2021年 發現 ,它不只是形狀學得像,連人家身上一大半的細菌都搬過來了。這就奇妙了。 為什麼「變形藤」能夠學得這麼像呢?是寄主植物釋放了揮發性化合物?還是寄主植物跟它進行了基因的交換?還是它真的能「看」? 研究團隊這次用了塑膠植物給它模仿。塑膠植物沒有基因、也不會釋放揮發性化合物,這樣就可以排除前兩個因素了。 結果「變形藤」還是學得維妙維肖,而且,一個月以後,它還學得更像。 難道它真的會「看」嗎?只能說這棵藤本植物真是太奇妙了。 參考文獻: White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signal Behav. 2022 Dec 31;17(1):1977530. doi: 10.1080/15592324.2021.1977530. Epub 2021 Sep 21. PMID: 34545774; PMCID: PMC8903786.

植物界的變色龍Boquila trifoliolata如何模仿?

  圖片來源: 維基百科 信不信植物界也有變色龍?原產於南美洲智利中、南部與阿根廷的藤本植物 Boquila trifoliolata 在攀爬到其他樹上時,葉片的形狀會從原本的長鈍橢圓形三出複葉改變為宿主植物的形狀;甚至當它從一種植物攀爬到另一種植物時,葉片的型態也會跟著改變。 過去的研究發現, Boquila trifoliolata 之所以做這樣的改變,可能是因為 可以讓它避免被吃 。但是到底「變色龍藤」是怎麼「看」到它攀爬上去的植物長什麼樣子呢? 最近發表在Scientific Report上的研究發現,「變色龍藤」可能是從「宿主」的菌群(microbiota)得到資料。研究團隊收集了「變色龍藤」模仿「宿主」的葉片上的菌群(BR)、沒有模仿「宿主」的葉片上的菌群(BT),以及「宿主」的菌群(RS)。結果發現,沒有模仿「宿主」的葉片上的菌群(BT)與「宿主」的菌群(RS)之間只有共享了79個獨特的OTU(操作分類單元,可能代表細菌的屬或種),但模仿「宿主」的葉片上的菌群(BR)與「宿主」的菌群(RS)之間卻共享了255個獨特的OTU!更有趣的是,沒有模仿「宿主」的葉片上的菌群(BT)與模仿「宿主」的葉片上的菌群(BR)間也只共享了33個OTU。 這個結果顯示了,「變色龍藤」能模仿「宿主」的型態,與它們之間共享的菌群高度相關。但是究竟「變色龍藤」是如何從這些菌群得到資料?這就有待進一步的研究了。 參考文獻: Gianoli, E., González-Teuber, M., Vilo, C. et al. Endophytic bacterial communities are associated with leaf mimicry in the vine Boquila trifoliolata. Sci Rep 11, 22673 (2021). https://doi.org/10.1038/s41598-021-02229-8

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。