跳到主要內容

在短日照週期時,PP2-A13透過監測蔗糖量測量日照長短

 

圖片來源:維基百科

雖然說植物是很好的研究日照週期的材料,但絕大部分植物日照週期的研究都是著眼在「開花時間」,畢竟那非常明顯可見。而對於植物如何測量每日的日照長短,或者是否有其他機制測量日長,相關的研究就少得多了。

最近來自美國的研究團隊發現了一個基因PP2-A13PHLOEM-PROTEIN2-A13),負責在短日照(或者正確的說法是長夜,8小時光照16小時黑夜)狀況下測量每天的日照長短。

這個基因是怎麼發現的?原來研究團隊一開始就想要瞭解,植物在短日照狀況(冬天)下如何維持健康、存活到春暖花開;所以他們以阿拉伯芥為模式,在短日照狀況下篩選表現量至少上升兩倍的基因。

最後他們找到這個PP2-A13,它在短日照下的黑暗週期開始後,表現量就會迅速上升,在四小時時達到高峰,然後再緩步下降。

為了要進一步瞭解這個基因對植物的影響,研究團隊找到了缺少PP2-A13的突變株。在短日照的狀況下,突變株的葉片在開花前就開始衰老,且無法維持其生物質量(biomass)。但是生長在常日照狀況下的突變株,卻只在營養期早期有葉片衰老的現象,且很快就消失了。

不只這樣,突變株在短日照狀況下其花莖型態、開花時間都有改變,且有7.7%的突變株無法順利開花結子。其他的突變株雖然能結出種子,但整體種子的產量都下降。

由於突變株的性狀有點像自體吞噬(autophagy)有障礙的突變株,所以作者進行了一些測試。測試的結果發現,突變株在黑暗終或缺氮狀況下的存活率與野生種相同,顯示突變株似乎與已知的自體吞噬突變不同;當研究團隊製作出同時缺少PP2-A13ATG5ATG7(自體吞噬基因)時,兩個雙突變株其生長的性狀比單突變株更嚴重,顯示PP2-A13可能與自體吞噬有關,但跟這兩個基因不在同一條路徑上。

到底這個基因在植物中表現的狀況如何呢?研究團隊將這個基因的啟動子(promoter)連結到兩個不同的報告者基因後發現,它在植物的各組織都有表現,在細胞中細胞核內與核外也都有。

為了要瞭解PP2-A13表現的動力學,研究團隊將它的啟動子連結到螢火蟲的冷光基因,結果發現就像先前看到的,在短日照下於黃昏後四小時表現快速地達到高峰,而光照會抑制它的表現。

到底它的受光抑制的表現是一種光敏素的反應,還是因為光合作用的關係呢?研究團隊將植物養在低於能進行光合作用的紅光(5 mMm-2s-1)下,結果發現在如此低的紅光下,PP2-A13的表現類似於短日照狀況。而PP2-A13的表現也會被蔗糖或DCMU(3-(3,4-dichlorophenyl)-1,1-dimethylurea,光合作用的抑制劑)抑制。這些結果都顯示了PP2-A13的表現受到光合作用的影響。

由於蔗糖的產生受到澱粉的形成與分解的調節,而澱粉的形成與分解又受到生物時鐘與光週期的調節,所以研究團隊進一步觀察PP2-A13在不能合成澱粉的突變株與合成太多澱粉的突變株下的表現。結果發現,在短日照狀況下,PP2-A13的表現在兩種突變株的背景下都延遲了;但在長日照狀況下卻提前了,且出現兩個高峰,不過蔗糖可以抑制第一個高峰出現。這結果告訴我們,澱粉的合成,不論量多或量少,的確會影響PP2-A13的表現。

由於光週期可藉由控制澱粉的合成與分解來影響蔗糖的產量,研究團隊觀察植物內蔗糖的含量與PP2-A13表現之間的關係。結果發現,蔗糖的累積與PP2-A13的表現量成反比,而且光照週期中若日照短於12小時,黃昏後蔗糖的含量一定會降低,也就出現PP2-A13表現量升高的現象了。

所以,PP2-A13可能是透過測量細胞內的蔗糖含量(也有可能是澱粉?)來測量短日照狀況下的日照長短。在短日照下,如缺少這個基因,會嚴重影響到植物的生長發育。

不知道其他植物是否有類似的基因?是否也有類似的功能?以阿拉伯芥為模式的好處是,所有的基因都已知且容易找到突變株,但阿拉伯芥一代只有兩個月,所以應該沒有越冬機制,這也使得究竟其他植物是否有類似基因這件事,不無疑問。

參考文獻:

Liu et al., 2021, Developmental Cell 56, 1–15

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N